×

Formality theorems: from associators to a global formulation. (English) Zbl 1112.53067

This paper is an extension of Tamarkin’s work on the formality theorem. The author first recalls the relevant results and gives some explanation of the Etingof-Kazhdan quantization-dequantization theorem. Then, he shows how to construct a global formality starting from a Drinfeld operator. Explicit examples are also given. Finally, the author proves a globalization of Tamarfin’s construction.

MSC:

53D55 Deformation quantization, star products
16E40 (Co)homology of rings and associative algebras (e.g., Hochschild, cyclic, dihedral, etc.)
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] Bauesi, J. H., The double bar and cobar constructions, Compos. Math, 43, 331-341 (1981) · Zbl 0478.57027
[2] Dolgushev, V., Covariant and equivariant formality theorems, Adv. Math., 191, 147-177 (2005) · Zbl 1116.53065 · doi:10.1016/j.aim.2004.02.001
[3] Drinfeld, V. G., Quasi-Hopf algebras, Leningrad Math. J., 1, 1419-1457 (1990) · Zbl 0718.16033
[4] Drinfeld, V. G., Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), 798-820 (1993)
[5] Enriquez, B., A cohomological construction of quantization functors of Lie bialgebras, Adv. Math., 197, 430-479 (2005) · Zbl 1127.17013 · doi:10.1016/j.aim.2004.10.011
[6] Etingof, P.; Kazhdan, D., Quantization of Lie bialgebras. I, Selecta Math. (N.S.), 2, 1-41 (1996) · Zbl 0863.17008 · doi:10.1007/BF01587938
[7] Etingof, P.; Kazhdan, D., Quantization of Lie bialgebras. II, III, Selecta Math. (N.S.), 4, 213-231, 233-269 (1998) · Zbl 0915.17009 · doi:10.1007/s000290050030
[8] Fedosov, B., A simple geometrical construction of deformation quantization, J. Diff. Geom., 40, 213-238 (1994) · Zbl 0812.53034
[9] Gerstenhaber, M.; Voronov, A., Homotopy G-algebras and moduli space operad, Internat. Math. Res. Notices, 3, 141-153 (1995) · Zbl 0827.18004 · doi:10.1155/S1073792895000110
[10] Ginot, G., Homologie et modèle minimal des algèbres de Gerstenhaber, Ann. Math. Blaise Pascal, 11, 95-127 (2004) · Zbl 1139.16301 · doi:10.5802/ambp.187
[11] Ginot, G.; Halbout, G., A formality theorem for Poisson manifold, Lett. Math. Phys., 66, 37-64 (2003) · Zbl 1066.53145 · doi:10.1023/B:MATH.0000017625.37702.7a
[12] Ginzburg, V.; Kapranov, M., Koszul duality for operads, Duke Math. J., 76, 203-272 (1994) · Zbl 0855.18006 · doi:10.1215/S0012-7094-94-07608-4
[13] Halbout, G., Formule d’homotopie entre les complexes de Hochschild et de de Rham, Compositio Math., 126, 123-145 (2001) · Zbl 1007.16008 · doi:10.1023/A:1017570728719
[14] Hinich, V., Tamarkin’s proof of Kontsevich’s formality theorem, Forum Math., 15, 591-614 (2003) · Zbl 1081.16014 · doi:10.1515/form.2003.032
[15] Hochschild, G.; Kostant, B.; Rosenberg, A., Differential forms on regular affine algebras, Transactions AMS, 102, 383-408 (1962) · Zbl 0102.27701 · doi:10.1090/S0002-9947-1962-0142598-8
[16] Kassel, C., Homologie cyclique, caractère de Chern et lemme de perturbation, J. Reine Angew. Math., 408, 159-180 (1990) · Zbl 0691.18002 · doi:10.1515/crll.1990.408.159
[17] Khalkhali, M., Operations on cyclic homology, the X complex, and a conjecture of Deligne, Comm. Math. Phys., 202, 309-323 (1999) · Zbl 0952.16008 · doi:10.1007/s002200050584
[18] Kontsevich, M., Formality conjecture. Deformation theory and symplectic geometry, Math. Phys. Stud., 20, 139-156 (1996) · Zbl 1149.53325
[19] Kontsevich, M., Deformation quantization of Poisson manifolds, I, Lett. Math. Phys., 66, 157-216 (2003) · Zbl 1058.53065 · doi:10.1023/B:MATH.0000027508.00421.bf
[20] Kontsevich, M.; Soibelman, Y., Deformations of algebras over operads and the Deligne conjecture, 255-307 (2000) · Zbl 0972.18005
[21] Lecomte, P. B. A.; Wilde, M. De, A homotopy formula for the Hochschild cohomology, Compositio Math., 96, 99-109 (1995) · Zbl 0842.16006
[22] Tamarkin, D., Another proof of M. Kontsevich’s formality theorem (1998)
[23] Voronov, A.; Publ., Kluwer Acad., Conférence Moshé Flato 1999, Vol. II (Dijon), 307-331 (2000) · Zbl 0974.16005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.