×

A Taylor method for numerical solution of generalized pantograph equations with linear functional argument. (English) Zbl 1112.34063

Summary: This paper is concerned with a generalization of a functional-differential equation known as the pantograph equation which contains a linear functional argument. We introduce a numerical method based on the Taylor polynomials for the approximate solution of the pantograph equation with retarded case or advanced case. The method is illustrated by studying the initial value problems. The results obtained are compared by the known results.

MSC:

34K28 Numerical approximation of solutions of functional-differential equations (MSC2010)
34K06 Linear functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ajello, W. G.; Freedman, H. I.; Wu, J., A model of stage structured population growth with density depended time delay, SIAM J. Appl. Math., 52, 855-869 (1992) · Zbl 0760.92018
[2] Buhmann, M. D.; Iserles, A., Stability of the discretized pantograph differential equation, Math. Comput., 60, 575-589 (1993) · Zbl 0774.34057
[3] G. Derfel, On compactly supported solutions of a class of functional-differential equations, in: Modern Problems of Function Theory and Functional Analysis, Karaganda University Press. 1980 (in Russian).; G. Derfel, On compactly supported solutions of a class of functional-differential equations, in: Modern Problems of Function Theory and Functional Analysis, Karaganda University Press. 1980 (in Russian).
[4] Derfel, G.; Iserles, A., The pantograph equation in the complex plane, J. Math. Anal. Appl., 213, 117-132 (1997) · Zbl 0891.34072
[5] Derfel, G.; Dyn, N.; Levin, D., Generalized refinement equation and subdivision process, J. Approx. Theory, 80, 272-297 (1995) · Zbl 0823.45001
[6] El-Safty, A.; Abo-Hasha, S. M., On the application of spline functions to initial value problems with retarded argument, Int. J. Comput. Math., 32, 173-179 (1990) · Zbl 0752.65057
[7] El-Safty, A.; Salim, M. S.; El-Khatib, M. A., Convergence of the spline function for delay dynamic system, Int. J. Comput. Math., 80, 4, 509-518 (2003) · Zbl 1022.65075
[8] Evans, D. J.; Raslan, K. R., The Adomian decomposition method for solving delay differential equation, Int. J. Comput. Math., 82, 1, 49-54 (2005) · Zbl 1069.65074
[9] Fox, L.; Mayers, D. F.; Ockendon, J. A.; Tayler, A. B., On a functional differential equation, J. Inst. Math. Appl., 8, 271-307 (1971) · Zbl 0251.34045
[10] Gülsu, M.; Sezer, M., The approximate solution of high-order linear difference equation with variable coefficients in terms of Taylor polynomials, Appl. Math. Comput., 168, 1, 76-88 (2005) · Zbl 1082.65592
[11] Gülsu, M.; Sezer, M., A method for the approximate solution of the high-order linear difference equations in terms of Taylor polynomials, Int. J. Comput. Math., 82, 5, 629-642 (2005) · Zbl 1072.65164
[12] Gülsu, M.; Sezer, M., A Taylor polynomial approach for solving differential-difference equations, J. Comput. Appl. Math., 186, 2, 349-364 (2006) · Zbl 1078.65551
[13] Hwang, C., Solution of a functional differential equation via delayed unit step functions, Int. J. Syst. Sci., 14, 9, 1065-1073 (1983) · Zbl 0509.93026
[14] Hwang, C.; Shih, Y.-P., Laguerre series solution of a functional differential equation, Int. J. Syst. Sci., 13, 7, 783-788 (1982) · Zbl 0483.93056
[15] Kanwal, R. P.; Liu, K. C., A Taylor expansion approach for solving integral equations, Int. J. Math. Educ. Sci. Technol., 20, 3, 411-414 (1989) · Zbl 0683.45001
[16] Liu, M. Z.; Li, D., Properties of analytic solution and numerical solution of multi-pantograph equation, Appl. Math. Comput., 155, 853-871 (2004) · Zbl 1059.65060
[17] Muroya, Y.; Ishiwata, E.; Brunner, H., On the attainable order of collocation methods for pantograph integro-differential equations, J. Comput. Appl. Math., 152, 347-366 (2003) · Zbl 1023.65146
[18] Nas, Ş.; Yalçınbaş, S.; Sezer, M., A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations, Int. J. Math. Educ. Sci. Technol., 31, 2, 213-225 (2000) · Zbl 1018.65152
[19] Ockendon, J. R.; Tayler, A. B., The dynamics of a current collection system for an electric locomotive, Proc. Roy. Soc. London, Ser. A, 322, 447-468 (1971)
[20] Rao, G. P.; Palanisamy, K. R., Walsh stretch matrices and functional differential equations, IEEE Trans. Autom. Control, 27, 272-276 (1982) · Zbl 0488.34060
[21] Sezer, M., A method for the approximate solution of the second order linear differential equations in terms of Taylor polynomials, Int. J. Math. Educ. Sci. Technol., 27, 6, 821-834 (1996) · Zbl 0887.65084
[22] Sezer, M.; Gülsu, M., A new polynomial approach for solving difference and Fredholm integro-difference equation with mixed argument, Appl. Math. Comput., 171, 1, 332-344 (2005) · Zbl 1084.65133
[23] M. Shadia, Numerical solution of delay differential and neutral differential equations using spline methods, Ph.D. Thesis, Assuit University, 1992.; M. Shadia, Numerical solution of delay differential and neutral differential equations using spline methods, Ph.D. Thesis, Assuit University, 1992.
[24] Yalçinbaş, S.; Sezer, M., The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials, Appl. Math. Comput., 112, 291-308 (2000) · Zbl 1023.65147
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.