×

Robust stability of time-varying polytopic systems via parameter-dependent homogeneous Lyapunov functions. (English) Zbl 1111.93064

Summary: This paper deals with robust stability analysis of linear state space systems affected by time-varying uncertainties with bounded variation rate. A new class of parameter-dependent Lyapunov functions is introduced, whose main feature is that the dependence on the uncertain parameters and the state variables are both expressed as polynomial homogeneous forms. This class of Lyapunov functions generalizes those successfully employed in the special cases of unbounded variation rates and time-invariant perturbations. The main result of the paper is a sufficient condition to determine the sought Lyapunov function, which amounts to solving an LMI feasibility problem, derived via a suitable parameterization of polynomial homogeneous forms. Moreover, lower bounds on the maximum variation rate for which robust stability of the system is preserved, are shown to be computable in terms of generalized eigenvalue problems. Numerical examples are provided to illustrate how the proposed approach compares with other techniques available in the literature.

MSC:

93D09 Robust stability
93D30 Lyapunov and storage functions
93C05 Linear systems in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Almeida, H. L.S.; Bhaya, A.; Falcao, D. M.; Kaszkurewicz, E., A team algorithm for robust stability analysis and control design of uncertain time-varying linear systems using piecewise quadratics Lyapunov functions, International Journal of Robust and Nonlinear Control, 11, 357-371 (2001) · Zbl 0984.93062
[2] Barmish, B. R., New tools for robustness of linear systems (1994), Macmillan Publishing Company: Macmillan Publishing Company New York · Zbl 1094.93517
[3] Blanchini, F., Nonquadratic Lyapunov functions for robust control, Automatica, 31, 451-461 (1995) · Zbl 0825.93653
[4] Blanchini, F.; Miani, S., A universal class of smooth functions for robust control, IEEE Transactions on Automatic Control, 44, 3, 641-647 (1999) · Zbl 0962.93081
[5] Bliman, P.-A. (2002). Nonconservative LMI approach to robust stability for systems with uncertain scalar parameters. Proceedings of 41st IEEE CDC (pp. 305-310). Las Vegas, Nevada.; Bliman, P.-A. (2002). Nonconservative LMI approach to robust stability for systems with uncertain scalar parameters. Proceedings of 41st IEEE CDC (pp. 305-310). Las Vegas, Nevada.
[6] Bliman, P.-A., A convex approach to robust stability for linear systems with uncertain scalar parameters, SIAM Journal on Control and Optimization, 42, 6, 2016-2042 (2004) · Zbl 1069.93027
[7] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory (1994), SIAM: SIAM Philadelphia · Zbl 0816.93004
[8] Brayton, R. K.; Tong, C. H., Stability of dynamical systems: A constructive approach, IEEE Transactions on Circuits and Systems, 26, 224-234 (1979) · Zbl 0413.93048
[9] Chesi, G.; Garulli, A.; Tesi, A.; Vicino, A., Homogeneous Lyapunov functions for systems with structured uncertainties, Automatica, 39, 6, 1027-1035 (2003) · Zbl 1079.93036
[10] Chesi, G., Garulli, A., Tesi, A., Vicino, A. (2003b). Robust stability for polytopic systems via polynomially parameter-dependent Lyapunov functions. 42nd IEEE CDC (pp. 4670-4675). Maui, Hawaii.; Chesi, G., Garulli, A., Tesi, A., Vicino, A. (2003b). Robust stability for polytopic systems via polynomially parameter-dependent Lyapunov functions. 42nd IEEE CDC (pp. 4670-4675). Maui, Hawaii. · Zbl 1365.93365
[11] Chesi, G.; Garulli, A.; Tesi, A.; Vicino, A., Solving quadratic distance problems: An LMI-based approach, IEEE Transactions on Automatic Control, 48, 2, 200-212 (2003) · Zbl 1364.90240
[12] Chesi, G., Garulli, A., Tesi, A., & Vicino, A. (2004a). Parameter-dependent homogeneous Lyapunov functions for robust stability of linear time-varying systems. 43rd IEEE CDC (pp. 4095-4100). Paradise Island, Bahamas.; Chesi, G., Garulli, A., Tesi, A., & Vicino, A. (2004a). Parameter-dependent homogeneous Lyapunov functions for robust stability of linear time-varying systems. 43rd IEEE CDC (pp. 4095-4100). Paradise Island, Bahamas. · Zbl 1111.93064
[13] Chesi, G.; Garulli, A.; Tesi, A.; Vicino, A., Robust analysis of LFR systems through homogeneous polynomial Lyapunov functions, IEEE Transactions on Automatic Control, 49, 7, 1211-1216 (2004) · Zbl 1365.93364
[14] Chesi, G., Garulli, A., Tesi, A., & Vicino, A. (2005). An LMI-based technique for robust stability analysis of linear systems with polynomial parametric uncertainties. In D. Henrion, A. Garulli (Eds.), Positive polynomials in control, Lecture Notes in Control and Information Sciences, Vol. 312, (pp. 87-101). London: Springer.; Chesi, G., Garulli, A., Tesi, A., & Vicino, A. (2005). An LMI-based technique for robust stability analysis of linear systems with polynomial parametric uncertainties. In D. Henrion, A. Garulli (Eds.), Positive polynomials in control, Lecture Notes in Control and Information Sciences, Vol. 312, (pp. 87-101). London: Springer. · Zbl 1138.93393
[15] Chesi, G., Tesi, A., Vicino, A., & Genesio, R. (1999). On convexification of some minimum distance problems. 5th European Control Conf. (F0531.pdf), Karlsruhe, Germany.; Chesi, G., Tesi, A., Vicino, A., & Genesio, R. (1999). On convexification of some minimum distance problems. 5th European Control Conf. (F0531.pdf), Karlsruhe, Germany. · Zbl 0934.93028
[16] Choi, M.; Lam, T.; Reznick, B., Sums of squares of real polynomials, (Proceedings of symposia in pure mathematics (1995)), 103-126 · Zbl 0821.11028
[17] Dasgupta, S.; Chockalingam, G.; Anderson, B. D.O.; Fu, M., Lyapunov functions for uncertain systems with applications to the stability of time varying systems, IEEE Transactions on Automatic Control, 41, 93-106 (1994) · Zbl 0847.93056
[18] Gahinet, P.; Apkarian, P.; Chilali, M., Affine parameter-dependent Lyapunov functions and real parametric uncertainty, IEEE Transactions on Automatic Control, 41, 3, 436-442 (1996) · Zbl 0854.93113
[19] Geromel, J. C.; Colaneri, P., Robust stability of time varying polytopic systems, Systems and Control Letters, 55, 1, 81-85 (2005) · Zbl 1129.93479
[20] Henrion, D.; Lasserre, J.-B., Convergent relaxations of polynomial matrix inequalities and static output feedback, Transactions on Automatic Control, 51, 2, 192-202 (2006) · Zbl 1366.93180
[21] Hol, C., and Scherer, C. (2005). Sum of squares relaxations for robust polynomial semi-definite programs. In Proceedings of 15th IFAC World Congress, Prague.; Hol, C., and Scherer, C. (2005). Sum of squares relaxations for robust polynomial semi-definite programs. In Proceedings of 15th IFAC World Congress, Prague. · Zbl 1134.90033
[22] Horisberger, H. P.; Belanger, P. R., Regulators for linear time invariant plants with uncertain parameters, IEEE Transactions on Automatic Control, 21, 5, 705-708 (1976) · Zbl 0339.93013
[23] Jarvis-Wloszek, Z., Packard, A. K. (2002). An LMI method to demonstrate simultaneous stability using non-quadratic polynomial Lyapunov functions. Proceedings of 41st IEEE CDC(pp. 287-292). Las Vegas, Nevada.; Jarvis-Wloszek, Z., Packard, A. K. (2002). An LMI method to demonstrate simultaneous stability using non-quadratic polynomial Lyapunov functions. Proceedings of 41st IEEE CDC(pp. 287-292). Las Vegas, Nevada.
[24] Leite, V. J.S.; Peres, P. L.D., An improved LMI condition for robust \(D\)-stability of uncertain polytopic systems, IEEE Transactions on Automatic Control, 48, 3, 500-504 (2003) · Zbl 1364.93598
[25] Montagner, V. F., Peres, P. L. D. (2003). A new LMI condition for the robust stability of linear time-varying systems. Proceedings of 42nd IEEE CDC (pp. 6133-6138). Maui, Hawaii.; Montagner, V. F., Peres, P. L. D. (2003). A new LMI condition for the robust stability of linear time-varying systems. Proceedings of 42nd IEEE CDC (pp. 6133-6138). Maui, Hawaii.
[26] Narendra, K. S.; Taylor, J. H., Frequency domain criteria for absolute stability (1973), Academic Press Inc: Academic Press Inc New York · Zbl 0266.93037
[27] Parrilo, P. A. (2000). Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology.; Parrilo, P. A. (2000). Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology.
[28] Peaucelle, D.; Arzelier, D.; Bachelier, O.; Bernussou, J., A new robust \(D\)-stability condition for real convex polytopic uncertainty, Systems and Control Letters, 40, 21-30 (2000) · Zbl 0977.93067
[29] Trofino, A. (1999). Parameter dependent Lyapunov functions for a class of uncertain linear systems: A LMI approach. Proceedings of 38th IEEE CDC (pp. 2341-2346). Phoenix, Arizona.; Trofino, A. (1999). Parameter dependent Lyapunov functions for a class of uncertain linear systems: A LMI approach. Proceedings of 38th IEEE CDC (pp. 2341-2346). Phoenix, Arizona.
[30] S˘iljak, D., Nonlinear Systems: Parametric Analysis and Design (1969), Wiley: Wiley New York · Zbl 0179.41203
[31] Wu, F.; Prajna, S., Sos-based solution approach to polynomial LPV system analysis and synthesis problems, International Journal of Control, 78, 8, 600-611 (2005) · Zbl 1125.93353
[32] Xie, L.; Shishkin, S.; Fu, M., Piecewise Lyapunov functions for robust stability of linear time-varying systems, Systems and Control Letters, 31, 165-171 (1997) · Zbl 0901.93063
[33] Zelentsovsky, A. L., Nonquadratic Lyapunov functions for robust stability analysis of linear uncertain systems, IEEE Transactions on Automatic Control, 39, 1, 135-138 (1994) · Zbl 0796.93101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.