×

Do migratory or demographic disruptions rule the population impact of pollution in spatial networks? (English) Zbl 1108.92040

Summary: Ecotoxicology supplies environmental quality criteria mainly based on the potential effects of contaminants on demographic rates of natural populations. Possible impacts through pollutant-induced disruptions of spatial behaviors are totally neglected. Should it be significant to take into account this “second way”? We developed the example of a hypothetical brown trout population living in a river network. We analyzed how behaviors of toxic avoidance or attraction during the spawning migration alter the impact of pollution. Attraction behaviors basically enhanced the bad effect of pollution. More interesting, avoidance behaviors can weakly lift the asymptotic population growth rate, while if there is density-dependent effects on recruitment, pollutant avoidance can actually lead to a substantial drop in equilibrium size.
Our model allowed comparing the relative significance of migratory and demographic disruptions for explaining the population impacts of pollution; we thus stress on the need of increasing efforts to develop knowledge relative to toxicant-induced spatial behaviors and to integrate such effects in the definition of environmental quality criteria.

MSC:

92D40 Ecology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Benoit, D. A.; Leonard, E. N.; Christensen, G. M.; Fiandt, J. T., Toxic effects of cadmium on three generations of brook trout (Salvenilus fontinalis), Trans. Amer. Fish. Soc., 4, 550-560 (1976)
[2] Brown, V.; Shurben, D.; Miller, W.; Crane, M., Cadmium toxicity to rainbow trout Oncorhynchus mykiss Walbaum and brown trout Salmo trutta L. over extended exposure periods, Ecotoxicol. Environ. Saf., 29, 38-46 (1994)
[3] Caswell, H., Matrix Population Models (2000), Sinauer Associates Inc. Publishers: Sinauer Associates Inc. Publishers Sunderland, MA
[4] Charles, S.; Bravo de La Parra, R.; Mallet, J. P.; Persat, H.; Auger, P., Population dynamics modelling in an hierarchical arborescent river networkan attempt with Salmo trutta, Acta Biotheor., 46, 223-234 (1998)
[5] Charles, S.; Bravo de La Parra, R.; Mallet, J. P.; Persat, H.; Auger, P., A density dependent model describing Salmo trutta population dynamics in an arborescent river networkeffects of dams and channelling, C. R. Acad. Sci. Ser. III-Vie, 321, 979-990 (1998)
[6] Charles, S.; Bravo de La Parra, R.; Mallet, J. P.; Persat, H.; Auger, P., Annual spawning migrations in modelling brown trout population dynamics in an arborescent river network, Ecol. Model., 133, 15-31 (2000)
[7] Chaumot, A., Charles, S., Auger, P., Flammarion, P., Garric, J. 1999. Development of an ecotoxicological model in an arborescent river network: an attempt with a brown trout population. Aspects of Applied Biology, Vol. 53, Challenges in Applied Population Biology, pp. 131-136.; Chaumot, A., Charles, S., Auger, P., Flammarion, P., Garric, J. 1999. Development of an ecotoxicological model in an arborescent river network: an attempt with a brown trout population. Aspects of Applied Biology, Vol. 53, Challenges in Applied Population Biology, pp. 131-136.
[8] Chaumot, A.; Charles, S.; Flammarion, P.; Garric, J.; Auger, P., Using aggregation methods to assess toxicant effects on population dynamics in spatial systems, Ecol. Appl., 12, 6, 1771-1784 (2002)
[9] Chaumot, A.; Charles, S.; Flammarion, P.; Auger, P., Ecotoxicology and spatial modeling in population dynamicsan illustration with brown trout, Environ. Toxicol. Chem., 22, 5, 958-969 (2003)
[10] Crisp, D. T., Population densities of juvenile trout (Salmo trutta) in five upland streams and their effects upon growth, survival and dispersal, J. Appl. Ecol., 30, 759-771 (1993)
[11] Crisp, D. T.; Beaumont, W. R.C., The trout (Salmo trutta) population of the Afon Cwm, a small tributary of the Afon Dyfi, mid-Wales, J. Fish Biol., 46, 703-716 (1995)
[12] DeAngelis, D. L.; Svoboda, L. J.; Christensen, S. W.; Vaughan, D. S., Stability and returns times of Leslie matrices with density-dependent survivalapplications to fish populations, Ecol. Model., 8, 149-163 (1980)
[13] Egglishaw, H. J.; Shackley, P. E., Growth, survival and production of juvenile salmon and trout in a Scottish stream, 1966-75, J. Fish Biol., 11, 647-672 (1977)
[14] Elliott, J. M., Population regulation for different life-stage or migratory trout Salmo trutta in a lake district stream, 1966-83, J. Anim. Ecol., 54, 617-638 (1985)
[15] Elliott, J. M., Quantitative Ecology and The Brown Trout (1994), Oxford University Press: Oxford University Press Oxford
[16] Hansen, D. F.; Woodward, J. A.; Little, E. E.; DeLonay, A. J.; Bergman, H. L., Behavioral avoidancepossible mechanism for explaining abundance and distribution of trout species in a metal-impacted river, Environ. Toxicol. Chem., 18, 313-317 (1999)
[17] Héland, M., Organisation sociale et territorialité chez la truite commune immature au cours de l’ontogenèse, (Baglinière, J. L.; Maisse, G., La truite, biologie et écologie (1991), INRA Editions: INRA Editions Paris), 121-149
[18] Lebreton, J. D.; Gonzales-Davila, G., An introduction to models of subdivided populations, J. Biol. Syst., 1, 389-423 (1993)
[19] Levin, S. A.; Goodyear, P., Analysis of an age-structured fishery model, J. Math. Biol., 9, 245-274 (1980) · Zbl 0424.92020
[20] Maisse, G.; Baglinière, J. L., Biologie de la truite commune (Salmo trutta) dans les rivières françaises, (Baglinière, J. L.; Maisse, G., La truite, biologie et écologie (1991), INRA Editions: INRA Editions Paris), 22-45
[21] Woodward, D. F.; Hansen, J. A.; Bergman, H. L.; Little, E. E.; DeLonay, A. J., Brown trout avoidance of metals in water characteristic of the Clark Fork River, Montana, Can. J. Fish. Aquat. Sci., 52, 2031-2037 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.