Language:   Search:   Contact
Zentralblatt MATH has released its new interface!
For an improved author identification, see the new author database of ZBMATH.

Query:
Fill in the form and click »Search«...
Format:
Display: entries per page entries
Zbl 1108.30017
Bulboacă, Teodor
A class of double subordination-preserving integral operators.
(English)
[J] PU.M.A., Pure Math. Appl. 15, No. 2-3, 87-106 (2004). ISSN 1218-4586

Summary: If $H(U)$ denotes the space of analytic functions in the unit disk $U$, for the function $h\in\Cal{A}$ and $\beta \in \Bbb{C}$, we define the integral operator $\operatorname{I}_{h;\beta}:\Cal{K}\subset H(U)\rightarrow H(U)$ by $$\operatorname{I}_{\beta,\gamma}(f)(z)=\left[\beta \int_0^zf^\beta(t)h^{-1}(t)h'(t)\operatorname{d}t\right]^{1/\beta}.$$ If $\prec$'' stands for subordination, we determine simple sufficient conditions on $g_1$, $g_2$ and $\beta$ such that $$\left[\frac{zh'(z)}{h(z)}\right]^{1/\beta}g_1(z)\prec \left[\frac{zh'(z)}{h(z)}\right]^{1/\beta}f(z)\prec \left[\frac{zh'(z)}{h(z)}\right]^{1/\beta}g_2(z)$$ implies $$\operatorname{I}_{h;\beta}[g_1](z)\prec\operatorname{I}_{h;\beta}[f](z)\prec \operatorname{I}_{h;\beta}[g_2](z),$$ and say that $\operatorname{I}_{h;\beta}$ is a double subordination-preserving integral operator, and we call such a kind of result a sandwich-type theorem. Moreover, we prove that the above implication is sharp, in the sense that $\displaystyle\operatorname{I}_{h;\beta}[g_1]$ is the largest function and $\displaystyle\operatorname{I}_{h;\beta}[g_2]$ the smallest function so that the left-hand side, respectively the right-hand side of the above implication hold.
MSC 2000:
*30C80 Maximum principle, etc. (one complex variable)
30C45 Special classes of univalent and multivalent functions

Keywords: integral operators; subordination-preserving

Highlights
Master Server

Zentralblatt MATH Berlin [Germany]

© FIZ Karlsruhe GmbH

Zentralblatt MATH master server is maintained by the Editorial Office in Berlin, Section Mathematics and Computer Science of FIZ Karlsruhe and is updated daily.

Other Mirror Sites

Copyright © 2013 Zentralblatt MATH | European Mathematical Society | FIZ Karlsruhe | Heidelberg Academy of Sciences