Language:   Search:   Contact
Zentralblatt MATH has released its new interface!
For an improved author identification, see the new author database of ZBMATH.

Query:
Fill in the form and click »Search«...
Format:
Display: entries per page entries
Zbl 1107.30012
Kim, Yong Chan; Sugawa, Toshiyuki
The Alexander transform of a spirallike function.
(English)
[J] J. Math. Anal. Appl. 325, No. 1, 608-611 (2007). ISSN 0022-247X

Summary: Let ${\cal A}$ denote the class of analytic functions $f$ on the unit disk $\bbfD=\{z\in\bbfC:|z|<1\}$ normalized by $f(0)=0=f'(0)-1$ and let $\bbfS\subset {\cal A}$ consist of univalent functions. Let $$\bbfS_p (\beta)=\left\{f\in{\cal A}:\text{Re}\left(e^{i\beta}\frac{zf'(z)}{f(z)} \right)>0\text{ for }z\in\bbfD \right\},\quad\frac{-\pi}{2}<\beta<\frac {\pi}{2}$$ and $\bbfS_p=\cup_\beta \bbfS_p(\beta)$. Denote $$J[f](z): =\int^z_0\frac{f(\zeta)}{\zeta}d\zeta;\quad I_\alpha[f](z):=\int^z_0 \bigl[f'(\zeta)\bigr]^\alpha d\zeta,\quad \alpha\in \bbfC,\ 1^\alpha=1, \text{ for }f'(z)\ne 0.$$ The authors obtained for example: Theorem 1. The inclusion relation $J(\bbfS_p(\beta))\subset\bbfS$ holds precisely if either $\cos\beta\le\frac 12$ or $\beta=0$. Theorem 2. $A(J (\bbfS_p))= \{\alpha\in\bbfC:|\alpha|\le\frac 12\}$ where $A({\cal F}):=\{\alpha \in \bbfC:I_\alpha\le({\cal F})\subset\bbfS\}$.
MSC 2000:
*30C45 Special classes of univalent and multivalent functions

Keywords: univalent function; integral transform; spirallike function

Highlights
Master Server

### Zentralblatt MATH Berlin [Germany]

© FIZ Karlsruhe GmbH

Zentralblatt MATH master server is maintained by the Editorial Office in Berlin, Section Mathematics and Computer Science of FIZ Karlsruhe and is updated daily.

Other Mirror Sites

Copyright © 2013 Zentralblatt MATH | European Mathematical Society | FIZ Karlsruhe | Heidelberg Academy of Sciences