×

Local polynomial regresssion estimators in survey sampling. (English) Zbl 1105.62302

Summary: Estimation of finite population totals in the presence of auxiliary information is considered. A class of estimators based on local polynomial regression is proposed. Like generalized regression estimators, these estimators are weighted linear combinations of study variables, in which the weights are calibrated to known control totals, but the assumptions on the superpopulation model are considerably weaker. The estimators are shown to be asymptotically design-unbiased and consistent under mild assumptions. A variance approximation based on Taylor linearization is suggested and shown to be consistent for the design mean squared error of the estimators. The estimators are robust in the sense of asymptotically attaining the Godambe-Joshi lower bound to the anticipated variance. Simulation experiments indicate that the estimators are more efficient than regression estimators when the model regression function is incorrectly specified, while being approximately as efficient when the parametric specification is correct.

MSC:

62D05 Sampling theory, sample surveys

Software:

KernSmooth
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Brewer, K. R. W. (1963). Ratio estimation in finite populations: some results deductible from the assumption of an underlying stochastic process. Austral. J. Statist. 5 93-105. · Zbl 0115.36703 · doi:10.1111/j.1467-842X.1963.tb00288.x
[2] Cassel, C.-M., Särndal, C.-E. and Wretman, J. H. (1977). Foundations of Inference in Survey Sampling. Wiley, New York. · Zbl 0391.62007
[3] Chambers, R. L. (1996). Robust case-weighting for multipurpose establishment surveys. J. Official Statist. 12 3-32.
[4] Chambers, R. L., Dorfman, A. H. and Wehrly, T. E. (1993). Bias robust estimation in finite populations using nonparametric calibration. J. Amer. Statist. Assoc. 88 268-277. JSTOR: · Zbl 0795.62007 · doi:10.2307/2290722
[5] Chen, J. and Qin, J. (1993). Empirical likelihood estimation for finite populations and the effective usage of auxiliaryinformation. Biometrika 80 107-116. JSTOR: · Zbl 0769.62006 · doi:10.1093/biomet/80.1.107
[6] Cleveland, W. S. (1979). Robust locallyweighted regression and smoothing scatterplots. J. Amer. Statist. Assoc. 74 829-836. · Zbl 0423.62029 · doi:10.2307/2286407
[7] Cleveland, W. S. and Devlin, S. (1988). Locallyweighted regression: an approach to regression analysis by local fitting. J. Amer. Statist. Assoc. 83 596-610. · Zbl 1248.62054
[8] Cochran, W. G. (1977). Sampling Techniques, 3rd ed. Wiley, New York. · Zbl 0353.62011
[9] Deville, J.-C. and Särndal, C.-E. (1992). Calibration estimators in surveysampling. J. Amer. Statist. Assoc. 87 376-382. JSTOR: · Zbl 0760.62010 · doi:10.2307/2290268
[10] Dorfman, A. H. (1992). Nonparametric regression for estimating totals in finite populations. Proceedings of the Section on Survey Research Methods 622-625. Amer. Statist. Assoc., Alexandria, VA.
[11] Dorfman, A. H. and Hall, P. (1993). Estimators of the finite population distribution function using nonparametric regression. Ann. Statist. 21 1452-1475. · Zbl 0798.62017 · doi:10.1214/aos/1176349267
[12] Fan, J. (1992). Design-adaptive nonparametric regression. J. Amer. Statist. Assoc. 87 998-1004. JSTOR: · Zbl 0850.62354 · doi:10.2307/2290637
[13] Fan, J. (1993). Local linear regression smoothers and their minimax efficiencies. Ann. Statist. 21 196-216. · Zbl 0773.62029 · doi:10.1214/aos/1176349022
[14] Fan, J. and Gijbels, I. (1996). Local Polynomial Modeling and Its Applications. Chapman and Hall, London. · Zbl 0873.62037
[15] Fuller, W. A. (1996). Introduction to Statistical Time Series, 2nd ed. Wiley, New York. · Zbl 0851.62057
[16] Godambe, V. P. and Joshi, V. M. (1965). Admissibilityand Bayes estimation in sampling finite populations I. Ann. Math. Statist. 36 1707-1722. · Zbl 0138.13304 · doi:10.1214/aoms/1177699799
[17] Hall, P. and Turlach, B. A. (1997). Interpolation methods for adapting to sparse design in nonparametric regression. J. Amer. Statist. Assoc. 92 466-472. JSTOR: · Zbl 0890.62033 · doi:10.2307/2965694
[18] Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Chapman and Hall, London. · Zbl 0747.62061
[19] Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. J. Amer. Statist. Assoc. 47 663-685. JSTOR: · Zbl 0047.38301 · doi:10.2307/2280784
[20] Isaki, C. T. and Fuller, W. A. (1982). Surveydesign under the regression superpopulation model. J. Amer. Statist. Assoc. 77 89-96. JSTOR: · Zbl 0511.62016 · doi:10.2307/2287773
[21] Kuo, L. (1998). Classical and prediction approaches to estimating distribution functions from surveydata. Proceedings of the Section on Survey Research Methods 280-285. Amer. Statist. Assoc., Alexandria, VA.
[22] Opsomer, J.-D. and Ruppert, D. (1997). Fitting a bivariate additive model bylocal polynomial regression. Ann. Statist. 25 186-211. · Zbl 0869.62026 · doi:10.1214/aos/1034276626
[23] Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York. · Zbl 0544.60045
[24] Robinson, P. M. and Särndal, C.-E. (1983). Asymptotic properties of the generalized regression estimation in probabilitysampling. Sankhy\?a. Ser. B 45 240-248. · Zbl 0531.62005
[25] Royall, R. M. (1970). On finite population sampling under certain linear regression models. Biometrika 57 377-387. · Zbl 0197.16303 · doi:10.1093/biomet/57.2.377
[26] Ruppert, D. and Wand, M. P. (1994). Multivariate locallyweighted least squares regression. Ann. Statist. 22 1346-1370. · Zbl 0821.62020 · doi:10.1214/aos/1176325632
[27] Särndal, C.-E. (1980). On -inverse weighting versus best linear unbiased weighting in probabilitysampling. Biometrika 67 639-650. JSTOR: · Zbl 0445.62023
[28] Särndal, C.-E., Swensson, B. and Wretman, J. (1989). The weighted residual technique for estimating the variance of the general regression estimator of the finite population total. Biometrika 76 527-537. JSTOR: · Zbl 0677.62004 · doi:10.1093/biomet/76.3.527
[29] Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling. Springer, New York. · Zbl 0742.62008
[30] Sen, P. K. (1988). Asymptotics in finite population sampling. In Handbook of Statistics (P. R. Krishnaiah and C. R. Rao, eds.) 6 291-331. North-Holland, Amsterdam.
[31] Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York. · Zbl 0538.62002
[32] Tam, S. M. (1988). Some results on robust estimation in finite population sampling. J. Amer. Statist. Assoc. 83 242-248. JSTOR: · Zbl 0642.62002 · doi:10.2307/2288946
[33] Thompson, M. E. (1997). Theory of Sample Surveys. Chapman and Hall, London. · Zbl 0918.62005
[34] Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing. Chapman and Hall, London. · Zbl 0854.62043
[35] Wright, R. L. (1983). Finite population sampling with multivariate auxiliaryinformation. J. Amer. Statist. Assoc. 78 879-884. JSTOR: · Zbl 0535.62013 · doi:10.2307/2288199
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.