×

New approach to synchronization analysis of linearly coupled ordinary differential systems. (English) Zbl 1105.34031

The authors consider the following linearly coupled system of ordinary differential equations \[ \frac{dx_i(t)}{dt} = f(x_i(t),t)+\sum_{j=1}^{n}a_{ij}\Gamma x_j(t), \quad i=1,\dots,n, \] where \(x_i(t)\in \mathbb{R}^n\), \(A=(a_{ij})\in \mathbb{R}^{n\times n}\) is the coupling matrix with \(a_{ij}\geq 0\) for \(i\neq j\), and \(\Gamma = \mathrm{diag}\{ \gamma_1,\gamma_2,\dots,\gamma_n\}\) with \(\gamma_i>0\). The main result of the paper is a number of criteria for synchronization of the above system, i.e., for the stability of the invariant subspace \(S=\{x: x_i=x_j, i\neq j\}\). Using Lyapunov function approach, conditions for global synchronization are given. Presented criteria for local synchronization are mathematically rigorous reformulation of the so-called master stability function approach [L. M. Pecora, T. L. Carroll, G. A. Johnson, D. J. Mar and J. F. Heagy, Chaos 7, 520–543 (1997; Zbl 0933.37030)].
The paper presents two examples of linearly coupled neural networks.

MSC:

34D05 Asymptotic properties of solutions to ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C30 Manifolds of solutions of ODE (MSC2000)
34C14 Symmetries, invariants of ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
34C60 Qualitative investigation and simulation of ordinary differential equation models
34D20 Stability of solutions to ordinary differential equations

Citations:

Zbl 0933.37030
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Winfree, A. T., The Geometry of Biological Time (1980), Springer Verlag: Springer Verlag New York · Zbl 0856.92002
[2] Turing, A., The chemical basis of morphogenesis, Phil. Trans. R. Soc. B, 237, 37 (1952) · Zbl 1403.92034
[3] Kuramoto, Y., Chemical Oscillations, Waves, and Turbulence (1984), Springer-Verlag: Springer-Verlag New York · Zbl 0558.76051
[4] Dhamala, M.; Jirsa, V. K.; Ding, M., Transitions to synchrony in coupled bursting neurons, Phys. Rev. Lett., 92, 2 (2004), 028101-1
[5] Lloyd, A. L.; Jansen, V. A.A., Spatiotemporal dynamics of epidemics: synchrony in metapopular models, Math. Biosci., 188, 1-16 (2004) · Zbl 1036.92029
[6] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys. Rev. Lett., 64, 8, 821-824 (1990) · Zbl 0938.37019
[7] Mirollo, R. E.; Strogatz, S. H., Synchronization properties of pulse-coupled biological oscillators, SIAM J. Appl. Math., 50, 1645-1662 (1990) · Zbl 0712.92006
[8] Heagy, J. F.; Carroll, T. L.; Pecora, L. M., Synchronous chaos in coupled oscillator systems, Phys. Rev. E, 50, 1874-1885 (1994)
[9] Lashmanan, M.; Murali, K., Chaos in Nonlinear Oscillator: Controlling and Synchronization (1996), World Scientific: World Scientific Singapore
[10] Huygens, C., Horoloquim Oscillatorium (1672), F. Muguet.: F. Muguet. Paris
[11] Kunbert, L.; Agladze, K. I.; Krinsky, V. I., Image processing using light-sensitive chemical waves, Nature, 337, 244-247 (1989)
[12] Krinsky, V. I.; Biktashev, V. N.; Efimov, I. R., Autowaves principles for parallel image processing, Physica D, 49, 247-253 (1991)
[13] Perez-Manuzuri, V.; Perez-Villar, V.; Chua, L. O., Autowaves for image processing on a two-dimensional CNN array of excitable nonlinear circuits: flat and wrinkled labyrinths, IEEE Trans. Circuits Syst. I, 40, 174-181 (1995) · Zbl 0800.92038
[14] Lu, W. L.; Chen, T. P., Synchronization of coupled connected neural networks with delays, IEEE Trans. CAS-1, 51, 12, 2491-2503 (2004) · Zbl 1371.34118
[15] VanWiggeren, G. D.; Roy, P., Communication with chaotic laser, Science, 279, 20, 1198-1200 (1998)
[16] Hoppensteadt, F. C.; Lzhikevich, E. M., Pattern recognition via synchronization in phase-locked loop neural networks, IEEE Trans. Neural Netw., 11, 3, 734-738 (2000)
[17] Pecora, L. M.; Carroll, T.; Johnson, G.; Mar, D.; Fink, K. S., Synchronization stability in coupled oscillator arrays: solution for arbitrary configuration, Internat. J. Bifur. Chaos, 10, 2, 273-290 (2000) · Zbl 1090.34542
[18] Wang, X. F.; Chen, G., Synchronization in scale-free dynamical networks: robustness and fragility, IEEE Trans. Circuits Syst. I, 49, 1, 54-62 (2002) · Zbl 1368.93576
[19] Wu, C. W.; Chua, L. O., Synchronization in an array of linearly coupled dynamical systems, IEEE Trans. Circuits Syst. I, 42, 8, 430-447 (1995) · Zbl 0867.93042
[20] Wu, C. W., Synchronization in networks of nonlinear dynamical systems coupled via a directed graph, Nonlinearity, 18, 1057-1064 (2005) · Zbl 1089.37024
[21] Wang, X. F.; Chen, G., Synchronization small-world dynamical networks, Internat. J. Bifur. Chaos, 12, 1, 187-192 (2002)
[22] Horn, P. A.; Johnson, C. R., Matrix Analysis’ (1985), Cambridge University Press: Cambridge University Press New York
[23] Minc, H., Nonnegative Matrices (1988), Wiley: Wiley New York · Zbl 0638.15008
[24] Baciotti, A.; Conti, R.; Marcellini, P., Discontinuous Ordinary Differential Equations and Stabilization (2000), Universita di Firenze
[25] Clarke, F. H., Optimization and Nonsmooth Analysis (1983), Wiley and Sons: Wiley and Sons New York · Zbl 0727.90045
[26] Chen, Y.; Rangarajan, G.; Ding, M., General stability analysis of synchronized dynamics in coupled systems, Phys. Rev. E., 67, 026209 (2003)
[27] Ashwin, P.; Buescu, J.; Stewart, I., From attractor to chaotic saddle, a tale of transverse instability, Nonlinearity, 9, 703-737 (1996) · Zbl 0887.58034
[28] Alexander, J. C.; Kan, I.; Yorke, J. A.; You, Z., Saddled basins, Internat. J. Bifur. Chaos, 2, 795-813 (1992) · Zbl 0870.58046
[29] Chen, G.; Zhou, J.; Liu, Z., Global synchronization of coupled delayed neural networks with application to chaotic CNN models, Internat. J. Bifur. Chaos, 14, 2229-2249 (2004) · Zbl 1077.37506
[30] Zou, F.; Nosse, J. A., Bifurcation and chaos in cellular neural networks, IEEE Trans. CAS-1, 40, 3, 166-173 (1993) · Zbl 0782.92003
[31] Chua, L. O.; Yang, L., Cellular neural networks: Theory, IEEE Trans. Circuits Syst., 35, 1257-1272 (1988) · Zbl 0663.94022
[32] Chua, L. O.; Yang, L., Cellular neural networks: Applications, IEEE Trans. Circuits Syst., 35, 1273-1290 (1988)
[33] Zhang, Y.; He, Z., A secure communication scheme based on cellular neural networks, IEEE Int. Conf. Intell. Process. Systems, 1, 521-524 (1997)
[34] Watts, D. J.; Strogatz, S. H., Collective dynamics of ‘small-world’ networks, Nature, 391, 4, 440-442 (1998) · Zbl 1368.05139
[35] Newman, M. E.J.; Watts, D. J., Renormalization group analysis of the small-world network model, Phys. Lett. A, 263, 9, 341-346 (1999) · Zbl 0940.82029
[36] Barabasi, A.-L.; Albert, R., Emergence of scaling in random networks, Science, 286, 15, 509-512 (1999) · Zbl 1226.05223
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.