Language:   Search:   Contact
Zentralblatt MATH has released its new interface!
For an improved author identification, see the new author database of ZBMATH.

# Advanced Search

Query:
Fill in the form and click »Search«...
Format:
Display: entries per page entries
Zbl 1105.15013
Lawson, Jimmie; Lim, Yongdo
Solving symmetric matrix word equations via symmetric space machinery.
(English)
[J] Linear Algebra Appl. 414, No. 2-3, 560-569 (2006). ISSN 0024-3795

For a non-empty alphabet ${\cal A}=\{A_1, A_2,\dots \}$ the authors consider a semigroup with identity of generalized words of the form $W:=W(A_1,\dots, A_k)=A_1^{p_1}\cdots A_k^{p_k}$, where $p_j$ are real numbers. The word $W$ is symmetric if it is equal to $A_k^{p_k}\cdots A_1^{p_1}$. A symmetric word equation for ${\bold A}={\cal A}\cup \{X,B\}$ is an equation of the form $W(X,A_1,\dots, A_k)=B$, where $W(X,A_1,\dots, A_k)$ is a symmetric word in $X,A_1,\dots, A_k$, all exponents of $X$ are positive, and all exponents of $A_j$ are non-negative. Symmetric word equations arised naturally in matrix theory as equations over the cone of positive definite matrices. A symmetric word equation $W(X,A)=B$ is called (uniquely) solvable if there exists a (unique) positive definite solution $X$ of $W(X,A)=B$ for any pair of $n\times n$ positive definite matrices $A$ and $B$. It was proved [see {\it C. J. Hillar} and {\it C. R. Johnson}, Proc. Am. Math. Soc. 132, 945--953 (2004; Zbl 1038.15005)], that every positive definite word equation is solvable. The authors investigate the uniqueness conjecture and the continuity of solutions as a function on the variables $A$ and $B$ over positive definite matrices. The main goal of the paper is threefold. 1. The authors demonstrate how the geometric mean of two matrices and its generalizations to weighted means can be used to give explicit solutions to certain classes of equations. 2. It is shown how the geometry of the positive definite matrices equipped with a symmetric structure and a convex Riemannian metric allows to deduce solution for other classes of symmetric equations via the application of the Banach fixed point theorem. 3. It is shown that equations through degree 5 are uniquely solvable and the solution is continuous in $A$ and $B$. It is noted that the degree 5 is the best possible since it was already shown that there are degree 6 equations possessing with multiple solutions.
[Alexander Guterman (Moskva)]
MSC 2000:
*15A24 Matrix equations

Keywords: symmetric word equation; positive definite matrices; Geometric mean; Non-positive curvature; multiple solutions

Citations: Zbl 1038.15005

Login Username: Password:

Highlights
Master Server

### Zentralblatt MATH Berlin [Germany]

© FIZ Karlsruhe GmbH

Zentralblatt MATH master server is maintained by the Editorial Office in Berlin, Section Mathematics and Computer Science of FIZ Karlsruhe and is updated daily.

Other Mirror Sites

Copyright © 2013 Zentralblatt MATH | European Mathematical Society | FIZ Karlsruhe | Heidelberg Academy of Sciences
Published by Springer-Verlag | Webmaster