×

Two families of unit analytic signals with nonlinear phase. (English) Zbl 1104.94004

Summary: This paper focuses on constructing two families of unit analytic signals with nonlinear phase. The first is the \(2\pi\)-periodic extension of the nonlinear Fourier atoms, viz. \(\{e^{i\theta_a(t)}:|a|<1\), \(t\in \mathbb{R}\}\), where \(\theta_a' (t)\) is the Poisson kernel of the unit circle associated with \(a\) in the unit disc in the complex plane and satisfies \(\theta_a(t+2\pi)=\theta_a(t)+2\pi\); and the second consists of \(\{e^{i\varphi_a(t)}:|a|<1\), \(t\in\mathbb{R}\}\), that are the images of the nonlinear Fourier atoms under Cayley transform. These unit analytic signals are mono-components based on which one can define meaningful instantaneous frequency. The pairs \((1,\theta_a(t))\) and \((1,\varphi_a (t))\) form canonical pairs. The real signals \(\cos\theta_a(t)\) corresponding to the first family coincide with the notion of normalized intrinsic mode functions. We finally point out that, starting from nonlinear Fourier atoms, the Gram-Schmidt procedure leads to Laguerre bases.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
44A15 Special integral transforms (Legendre, Hilbert, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bedrosian, E., A product theorem for Hilbert transform, Proc. IEEE, 51, 868-869 (1963)
[2] Billings, S. A., Identification of Nonlinear Systems — A Survey, Proc. IEEE, Part D, 127, 272-285 (1980)
[3] Boashash, B., Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals, Proc. IEEE, 80, 417-430 (1992)
[4] Broome, P. W., Discrete orthonormal sequences, J. Assoc. Comput. Mach., 12, 151-168 (1965) · Zbl 0139.11302
[5] Chen, Q. H.; Huang, N. E.; Riemenschneider, S.; Xu, Y., A B-spline approach for empirical mode decomposition, Adv. Comput. Math., 24, 171-195 (2006) · Zbl 1092.94007
[6] Chen, Q.-H.; Li, L.-Q.; Qian, T., Stability of frames generated by nonlinear Fourier atoms, International Journal of Wavelets, Multiresolution Information Process., 3, 465-476 (2005) · Zbl 1086.42018
[7] Cizek, V., Discrete Hilbert transform, IEEE Trans. ASSP, 35, 340-343 (1970)
[8] Cizek, V., Discrete Fourier Transforms and Their Applications (1986), Adam Hilger Ltd: Adam Hilger Ltd Bristol, Boston, MA · Zbl 0614.42003
[9] Cohen, L., Time-Frequency Analysis (1995), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ
[10] Gabor, D., Theory of communications, J. IEEE, Part III, 429-457 (1946)
[11] Garnett, J. B., Bounded Analytic Functions (1987), Academic Press
[12] Greblicki, W., Nonparametric identification of Wiener systems by orthogonal series, IEEE Trans. Automat. Control, 39, 2077-2086 (1994) · Zbl 0824.93068
[13] Hahn, S. L., Generation of random signals using interpolation functions of the sampling theory, (Kleinheubacher Berichte, vol. 39 (1996), Deutsche Telekom: Deutsche Telekom Darmstadt), 568-651
[14] Hahn, S. L., Hilbert Transforms in Signal Processing (1996), Artech House Inc.: Artech House Inc. Boston, London · Zbl 0910.94003
[15] Hahn, S. L., On the uniqueness of the definition of the amplitude and phase of the analytic signal, Signal Process., 83, 1815-1820 (2003) · Zbl 1144.94338
[16] Haykin, S. S., Different forms of the Hilbert transform as applied to digital filters and sequences, Proc. IEE, 121, 561-567 (1974)
[17] Huang, N. E.; Shen, Z.; Long, S. R.; Wu, M. C.; Shih, H. H.; Zheng, Q.; Yen, N.-C.; Tung, C. C.; Liu, H. H., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. A, 454, 903-995 (1998) · Zbl 0945.62093
[18] Meyer, Y., Ondelettes et Operateurs (1990), Hermann · Zbl 0694.41037
[19] Ninness, B.; Gustafsson, F., A unifying construction of orthonormal bases for system identification, IEEE Trans. Automat. Control, 42, 515-521 (1997) · Zbl 0874.93034
[20] Nuttall, A. H., On the quadrature approximation to the Hilbert transform of modulated signals, Proc. IEEE (Letters), 1458-1459 (1966)
[21] Picinbono, B., On instantaneous amplitude and phase of signals, IEEE Trans. Signal Process., 45, 3, 552-560 (1997)
[22] Qian, T., Unit analytic signals and harmonic measures, J. Math. Anal. Appl., 314, 526-536 (2006) · Zbl 1082.94006
[23] Qian, T., Singular integrals with holomorphic kernels and Fourier multipliers on star-shape Lipschitz curves, Stud. Math., 123, 3, 195-216 (1997) · Zbl 0924.42012
[24] Qian, T., Characterization of boundary values of functions in Hardy spaces with applications in signal analysis, J. Integral Equations Appl., 17, 159-198 (2005) · Zbl 1086.30035
[25] Qian, T.; Chen, Q.-H.; Li, L.-Q., Analytic unit quadrature signals with nonlinear phase, Physica D, 203, 80-87 (2005) · Zbl 1070.94504
[26] Seip, K., (Interpolation and Sampling in Spaces of Analytic Functions. Interpolation and Sampling in Spaces of Analytic Functions, University Lecture Series, vol. 33 (2004), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 1057.30036
[27] Ville, J., Theorie et application de la notion de signal analytique, Cables Transm., 2A, 61-74 (1948)
[28] Wahlberg, B., System identification using Laguerre models, IEEE Trans. Automat. Control, 36, 551-562 (1991) · Zbl 0738.93078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.