×

On the stability properties of linear dynamic time-varying unforced systems involving switches between parameterizations from topologic considerations via graph theory. (English) Zbl 1104.93048

Summary: This paper deals with the stability of linear time-varying systems involving switches through time between different parameterizations of a dynamic linear time-varying system. Graph theory is used to describe the combinations of possible switches of the various sets of parameterizations which ensure the stability of the configurations. Each graph vertex is associated with a particular parameterization while edges (arcs) are associated with switches between the graphs (directed graphs or digraphs). An axiomatic framework is first established concerned with previously known stability results from systems theory related to the achievement of stability when switches between several parameterizations of a dynamic system take place. The axiomatic context is then used to obtain stability results mainly based on the topology of the links between the various configurations associated with a state-trajectory as well as on the nature of the vertices related to the stability of the various isolated parameterizations.

MSC:

93D20 Asymptotic stability in control theory
93A05 Axiomatic systems theory
93A30 Mathematical modelling of systems (MSC2010)
90B10 Deterministic network models in operations research
68R10 Graph theory (including graph drawing) in computer science
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alastruey, C. F., Stabilizability of systems with two point delays by using a generalized PD controller, Appl. Math. Lett., 11, 4, 39-42 (1998) · Zbl 0991.93095
[2] Alonso-Quesada, S.; De la Sen, M., Robust adaptive stabilizer of a class of time-varying plants using multiple controllers, Math. Comput. Simul., 63, 1, 15-34 (2003) · Zbl 1017.93091
[3] Alonso-Quesada, S.; De la Sen, M., Robust adaptive control with multiple estimation models for stabilization of a class of non-inversely stable time-varying plants, Asian J. Control, 6, 1, 59-73 (2004)
[4] Bakule, L.; Paulet-Crainiceanu, F.; Rodellar, J.; Rossell, J. M., IEEE Trans. Control Systems Technol., 13, 4, 663-669 (2005)
[5] Buratti, M., Existence of 1-rotational \(k\)-cycle systems of the complete graph, Graphs Combin., 20, 1, 41-46 (2004) · Zbl 1064.05036
[6] Bryant, V., A characterization of some 2-connected graphs and a comment on an algorithmic proof of Brook’s theorem, Discrete Math., 22, 81-83 (1978)
[7] Carvallo, R. E.; Klir, G. J., Reconstructability analysis—evaluation of reconstruction by hypotheses, Internat. J. Gen. Systems, 7, 1, 7-32 (1981) · Zbl 0464.93009
[8] Chvatal, V.; Erdos, P., A note on Hamiltonian circuits, Discrete Math., 2, 111-113 (1972) · Zbl 0233.05123
[9] De la Sen, M., Robust stability of a class of linear time-varying systems, IMA J. Math. Control Inform., 19, 4, 399-418 (2002) · Zbl 1016.93052
[10] M. De la Sen, Adaptive control of single-input single-output hybrid systems possessing interacting discrete and continuous-time dynamics, Discrete Dyn. Nature Soc. (3) (2005) 299-329.; M. De la Sen, Adaptive control of single-input single-output hybrid systems possessing interacting discrete and continuous-time dynamics, Discrete Dyn. Nature Soc. (3) (2005) 299-329. · Zbl 1136.93421
[11] De la Sen, M.; Minambres, J. J.; Garrido, A. J.; Almansa, A.; Soto, J. C., Basic theoretical results for expert systems, Application to the supervision of adaptation transients in planar robots, Artificial Intelligence, 152, 2, 173-211 (2004) · Zbl 1082.68831
[12] De la Sen, M.; Luo, Ningsu, On the uniform exponential stability of a wide class of linear time-delay systems, J. Math. Anal. Appl., 289, 2, 456-476 (2004) · Zbl 1046.34086
[13] Deo, N.; Prabha, G. M.; Krishnamoorthy, M. S., Algorithms for generating fundamental cycles in a graph, ACM Trans. Math. Software, 8, 26-42 (1988) · Zbl 0477.68070
[14] Gao, Z. W.; Liu, W. Q.; So, A. T.P., Decentralized control of generalized systems via a frequency domain approach, Asian J. Control, 6, 1, 46-58 (2004)
[15] Hinrischen, G.; Pritchard, A. J., Robust exponential stability of time-varying linear systems, Internat. J. Robust Nonlinear Control, 3, 1, 63-83 (1993) · Zbl 0782.93063
[16] Hoang, C. H.; McDiarmid, C., On the divisibility of graphs, Discrete Math., 242, 145-156 (2002) · Zbl 0988.05068
[17] Ibeas, A.; De la Sen, M., Representations of multi-model based controllers by using artificial intelligence tools, Informatica, 15, 3, 337-362 (2004) · Zbl 1105.93310
[18] Ibeas, A.; De la Sen, M.; Alonso-Quesada, S., Intelligent control of discrete linear systems based on a supervised adaptive multiestimation scheme, J. Intelligent Robotic Systems, 40, 4, 359-411 (2004)
[19] Ibeas, A.; De la Sen, M.; Alonso-Quesada, S., Stable multi-estimation model for single-input single-output discrete adaptive control systems, Internat. J. Systems Sci., 35, 8, 479-501 (2004) · Zbl 1064.93025
[20] Johnson, D. S.; Lenstra, K. J.; Kan Rinnooy, A. H.G., The complexity of the network design problem, Networks, 8, 279-285 (1978) · Zbl 0395.94048
[21] Jungnickel, D., Graph, Networks and Algorithms (1998), Springer: Springer Berlin, Heidelberg, New York
[22] Klir, G. J., Foundations of fuzzy set theory and fuzzy logic: a historical overview, Internat. J. Gen. Systems, 30, 2, 91-132 (2001) · Zbl 0991.03051
[23] Luo, N. S.; De la Sen, M.; Rodellar, J., Robust stabilization of a class of uncertain time delay systems in sliding mode, Internat. J. Robust Nonlinear Control, 7, 1, 59-74 (1997) · Zbl 0878.93055
[24] Melin, P.; Castillo, O., A new method for adaptive control of non-linear plants using type-2 fuzzy logic and neural networks, Internat. J. Gen. Systems, 33, 2-3, 289-304 (2004) · Zbl 1048.93504
[25] Mielikainen, T., Frequency-based views to pattern collections, Discrete Appl. Math., 154, 7, 1113-1139 (2006) · Zbl 1090.68089
[26] Mihok, P., On vertex partition numbers of graphs, (Fiedler, Graphs and Other Combinatorial Topics (1983), Teubner: Teubner Leipzig), 183-188
[27] Narendra, K. S.; Balakrishnan, J., Adaptive control using multiple models, IEEE Trans. Automat. Control, 42, 2, 171-187 (1997) · Zbl 0869.93025
[28] Nikolov, N. S.; Tarassov, A., Graph layering by promotion of nodes, Discrete Appl. Math., 154, 5, 848-860 (2006) · Zbl 1120.90064
[29] Niu, Y.; Lam, J.; Wang, X.; Ho, D. W.C., Observer-based sliding mode control for nonlinear state-delayed systems, Internat. J. Systems Sci., 35, 2, 139-150 (2004) · Zbl 1059.93025
[30] Resconi, G.; Klir, G. J.; Stclair, U., Hierarchical uncertainty metatheory based upon modal logic, Internat. J. Gen. Systems, 21, 1, 23-50 (1992) · Zbl 0767.03008
[31] Sajna, M., Cycle decompositions III: complete graphs and fixed length cycles, J. Combin. Des., 10, 27-78 (2002) · Zbl 1033.05078
[32] Shalaby, N., Skolem sequences, (Colbourn, C. J.; Dinitz, J. H., CRC Handbook of Combinatorial DesignsGraphs and Other Combinatorial Topics (1996), CRC Press: CRC Press Boca Raton, FL), 457-461 · Zbl 0844.05031
[33] Zheng, F.; Frank, P. M., Finite dimensional variable structure control design for distributed delay systems, Internat. J. Control, 74, 4, 398-408 (2001) · Zbl 1033.93008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.