×

A theory of anharmonic lattice statics for analysis of defective crystals. (English) Zbl 1104.74018

Summary: This paper develops a theory of anharmonic lattice statics for the analysis of defective complex lattices. This theory differs from the classical treatments of defects in lattice statics in that it does not rely on harmonic and homogeneous force constants. Instead, it starts with an interatomic potential, possibly with infinite range as appropriate for situations with electrostatics, and calculates the equilibrium states of defects. In particular, the present theory accounts for the differences in the force constants near defects and in the bulk. The present formulation reduces the analysis of defective crystals to the solution of a system of nonlinear difference equations with appropriate boundary conditions. A harmonic problem is obtained by linearizing the nonlinear equations, and a method for obtaining analytical solutions is described in situations where one can exploit symmetry. It is then extended to the anharmonic problem using modified Newton-Raphson iteration. The method is demonstrated for model problems motivated by domain walls in ferroelectric materials.

MSC:

74E15 Crystalline structure
74A25 Molecular, statistical, and kinetic theories in solid mechanics
82D25 Statistical mechanics of crystals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agarwal, R.P.: Difference Equations and Inequalities. Marcel Dekker, New York (2000) · Zbl 0952.39001
[2] Babŭska, I.: The Fourier transform in the theory of difference equations and its applications. Arch. Mech. Stosow. 11(4), 349–381 (1959) · Zbl 0092.12201
[3] Babŭska, I., Vitásek, E., Kroupa, F.: Some applications of the discrete Fourier transform to problems of crystal lattice deformation, I,II. Czechoslov. J. Phys. B. 10, 419–427, 488–504 (1960) · Zbl 0090.23202 · doi:10.1007/BF01557275
[4] Benedetto, J.J.: Harmonic Analysis and Applications. CRC, Boca Raton, Florida (1997) · Zbl 0891.42020
[5] Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Oxford University Press, London, UK (1988) · Zbl 0908.01039
[6] Boyer, L.L., Hardy, J.R.: Lattice statics applied to screw dislocations in cubic metals. Philos. Mag. 24, 647–671 (1971) · doi:10.1080/14786437108217037
[7] Briggs, W.L., Hendon, V.E.: The DFT: An Owner’s Manual for the Discrete Fourier Transform. SIAM, Philadelphia, Pennsylvania (1995) · Zbl 0827.65147
[8] Bullough, R., Tewary, V.K.: Lattice theory of dislocations. In: Nabarro, F.R.N. (ed.) Dislocations in Solids, vol. 2. North Holland, Amsterdam, The Netherlands (1979)
[9] De Boor, C., Holling, K., Riemenschneider, S.: Fundamental solutions of multivariate difference equations. J. Am. Math. Soc. 111, 403–415 (1989) · Zbl 0679.39001
[10] Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia, Pennsylvania (1996) · Zbl 0847.65038
[11] Elaydi, S.N.: An Introduction to Difference Equations. Springer, Berlin Heidelberg New York (1996) · Zbl 0840.39002
[12] Esterling, D.M.: Modified lattice-statics approach to dislocation calculations I. Formalism. J. Appl. Phys. 49(7), 3954–3959 (1978) · doi:10.1063/1.325405
[13] Esterling, D.M., Moriarty, J.A.: Modified lattice-statics approach to dislocation calculations II. Application. J. Appl. Phys. 49(7), 3960–3966 (1978) · doi:10.1063/1.325326
[14] Faux, I.D.: The polarization catastrophe in defect calculations in ionic crystals. J. Phys. C, Solid State Phys. 4, L211–L216 (1971) · doi:10.1088/0022-3719/4/10/009
[15] Flocken, J.W.: Modified lattice-statics approach to point defect calculations. Phys. Rev. B. 6(4), 1176–1181 (1972) · doi:10.1103/PhysRevB.6.1176
[16] Flocken, J.W.: Modified lattice-statics approach to surface calculations in a monatomic lattice. Phys. Rev. B. 15, 4132–4135 (1977) · doi:10.1103/PhysRevB.15.4132
[17] Flocken, J.W., Hardy, J.R.: Application of the method of lattice statics to interstitial Cu atoms in Cu. Phys. Rev. 175(3), 919–927 (1968) · doi:10.1103/PhysRev.175.919
[18] Flocken, J.W., Hardy, J.R.: Application of the method of lattice statics to vacancies in Na, K, Rb, and Cs. Phys. Rev. 117(3), 1054–1062 (1969) · doi:10.1103/PhysRev.177.1054
[19] Flocken, J.W., Hardy, J.R.: The method of lattice statics. In: Eyring, H., Henderson, D., (eds.) Fundamental Aspects of Dislocation Theory, vol. 1 of J.A. Simmons and R. de Wit and R. Bullough, pp. 219–245 (1970)
[20] Gallego, R., Ortiz, M.: A harmonic/anharmonic energy partition method for lattice statics computations. Model. Simul. Mater. Sci. Eng. 1, 417–436 (1993) · doi:10.1088/0965-0393/1/4/006
[21] Gregor, J.: The Cauchy problem for partial difference equations. Acta Appl. Math. 53, 247–263 (1998) · Zbl 0915.39003 · doi:10.1023/A:1006010620106
[22] Hsieh, C., Thomson, J.: Lattice theory of fracture and crack creep. J. Appl. Phys. 44, 2051–2063 (1973) · doi:10.1063/1.1662512
[23] Kanazaki, H.: Point defects in face-centered cubic lattice-I distortion around defects. J. Phys. Chem. Solids 2, 24–36 (1957) · doi:10.1016/0022-3697(57)90003-3
[24] Keating, P.N.: Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. 145(2), 637–645 (1966) · doi:10.1103/PhysRev.145.637
[25] King, K.C., Mura, T.: The eigenstrain method for small defects in a lattice. J. Phys. Chem. Solids 52(8), 1019–1030 (1991) · doi:10.1016/0022-3697(91)90031-T
[26] Lakshmikantham, V., Trigiante, D.: Theory of Difference Equations: Numerical Methods and Applications. Academic, New York (1988) · Zbl 0683.39001
[27] Lynch, R.E., Rice, J.R., Thomas, D.H.: Direct solution of partial difference equations by tensor product methods. Numer. Math. 6, 185–199 (1964) · Zbl 0126.12703 · doi:10.1007/BF01386067
[28] Maradudin, A.A.: Screw dislocations and discrete elastic theory. J. Phys. Chem. Solids 9, 1–20 (1958) · doi:10.1016/0022-3697(59)90084-8
[29] Maradudin, A.A., Montroll, E.W., Weiss, G.H.: Theory of Lattice Dynamics in The Harmonic Approximation. Academic, New York (1971)
[30] Matsubara, T.J.: Theory of diffuse scattering of x-rays by local lattice distortions. J. Phys. Soc. Japan 7, 270–274 (1952) · doi:10.1143/JPSJ.7.270
[31] Meyer, B., Vanderbilt, D.: Ab initio study of ferroelectric domain walls in \(\textrm{PbTiO}_{3}\) . Phys. Rev. B. 65, 1–11 (2001)
[32] Mickens, R.E.: Difference Equations: Theory and Applications. Chapman & Hall, London, UK (1990) · Zbl 0949.39500
[33] Mura, T.: Micromechanics of Defects in Solids. Martinus Nijhoff, Boston, Massachussetts (1982)
[34] Ortiz, M., Phillips, R.: Nanomechanics of defects in solids. Adv. Appl. Mech. 59(1), 1217–1233 (1999)
[35] Shenoy, V.B., Ortiz, M., Phillips, R.: The atomistic structure and energy of nascent dislocation loops. Model. Simul. Mater. Sci. Eng. 7, 603–619 (1999) · doi:10.1088/0965-0393/7/4/309
[36] Tewary, V.K.: Green-function method for lattice statics. Adv. Phys. 22, 757–810 (1973) · doi:10.1080/00018737300101389
[37] Tewary, V.K.: Lattice-statics model for edge dislocations in crystals. Philos. Mag. A. 80(6), 1445–1452 (2000) · doi:10.1080/01418610008212129
[38] Thomson, R., Zhou, S.J., Carlsson, A.E., Tewary, V.K.: Lattice imperfections studied by use of lattice Green’s functions. Phys. Rev., B. 46(17), 613–622 (1992) · doi:10.1103/PhysRevB.46.10613
[39] Tosi, M.P., Doyama, M.: Ion-model theory of polar molecules. Phys. Rev. 160(3), 716–718 (1967) · doi:10.1103/PhysRev.160.716
[40] Veit, J.: Fundamental solutions of partial difference equations. ZAMM 83(1), 51–59 (2003) · Zbl 1019.39001 · doi:10.1002/zamm.200310004
[41] Vitásek, E.: The n-dimensional fourier transform in the theory of difference equations. Arch. Mech. Stosow. 12(2), 185–202, 488–504 (1959) · Zbl 0096.09003
[42] Yavari, A.: Atomic structure of ferroelectric domain walls, free surfaces and steps. PhD thesis, California Institute of Technology (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.