×

A pricing strategy for job allocation in mobile grids using a non-cooperative bargaining theory framework. (English) Zbl 1101.68411

Summary: Due to their inherent limitations in computational and battery power, storage and available bandwidth, mobile devices have not yet been widely integrated into grid computing platforms. However, millions of laptops, PDAs and other portable devices remain unused most of the time, and this huge repository of resources can be potentially utilized, leading to what is called a mobile grid environment. In this paper, we propose a game theoretic pricing strategy for efficient job allocation in mobile grids. By drawing upon the Nash bargaining solution, we show how to derive a unified framework for addressing such issues as network efficiency, fairness, utility maximization, and pricing. In particular, we characterize a two-player, non-cooperative, alternating-offer bargaining game between the Wireless Access Point Server and the mobile devices to determine a fair pricing strategy which is then used to effectively allocate jobs to the mobile devices with a goal to maximize the revenue for the grid users. Simulation results show that the proposed job allocation strategy is comparable to other task allocation schemes in terms of the overall system response time.

MSC:

68M20 Performance evaluation, queueing, and scheduling in the context of computer systems
68M10 Network design and communication in computer systems
PDFBibTeX XMLCite
Full Text: DOI