×

Periodic non-autonomous second-order dynamical systems. (English) Zbl 1099.34042

The author proves the existence of a nonconstant periodic solution for a conservative system under various assumptions on the potential function. These hypotheses permit the use of a variational method based on topological linking theory.

MSC:

34C25 Periodic solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ambrosetti, A.; Coti Zelati, V., Periodic Solutions of Singular Lagrangian Systems (1993), Birkhäuser: Birkhäuser Boston · Zbl 0785.34032
[2] Ben Naoum, A. K.; Troestler, C.; Willem, M., Existence and multiplicity results for homogeneous second order differential equations, J. Differential Equations, 112, 239-249 (1994) · Zbl 0808.58013
[3] Berger, M. S.; Schechter, M., On the solvability of semilinear gradient operator equations, Adv. Math., 25, 97-132 (1977) · Zbl 0354.47025
[4] Ekeland, I.; Ghoussoub, N., Certain new aspects of the calculus of variations in the large, Bull. Amer. Math. Soc., 39, 207-265 (2002) · Zbl 1064.35054
[5] Long, Y. M., Nonlinear oscillations for classical Hamiltonian systems wit bi-even subquadritic potentials, Nonlinear Anal., 24, 1665-1671 (1995) · Zbl 0824.34042
[6] Ma, J.; Tang, C. L., Periodic solutions for some nonautonomous second-order systems, J. Math. Anal. Appl., 275, 2, 482-494 (2002) · Zbl 1024.34036
[7] Mawhin, J., Semi coercive monotone variational problems, Acad. Roy. Belg. Bull. Cl. Sci., 73, 118-130 (1987) · Zbl 0647.49007
[8] Mawhin, J.; Willem, M., Critical points of convex perturbations of some indefinite quadratic forms and semilinear boundary value problems at resonance, Ann. Inst. H. Poincaré Anal. Non Linearé, 3, 431-453 (1986) · Zbl 0678.35091
[9] Mawhin, J.; Willem, M., Critical Point Theory and Hamiltonian Systems (1989), Springer: Springer New York · Zbl 0676.58017
[10] Rabinowitz, P. H., On subharmonic solutions of Hamiltonian systems, Comm. Pure. Appl. Math., 33, 609-633 (1980) · Zbl 0425.34024
[11] Schechter, M., Linking Methods in Critical Point Theory (1999), Birkhäuser: Birkhäuser Boston · Zbl 0915.35001
[12] Schechter, M.; Tintarev, K., Pairs of critical points produced by linking subsets with applications to semilinear elliptic problems, Bull. Soc. Math. Belg., 44, 249-261 (1994) · Zbl 0785.58017
[13] Tang, C. L., Periodic solutions of nonautonomous second order systems with \(\gamma \)-quasisubadditive potential, J. Math. Anal. Appl., 189, 671-675 (1995) · Zbl 0824.34043
[14] Tang, C. L., Periodic solutions of nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc., 126, 3263-3270 (1998) · Zbl 0902.34036
[15] Tang, C. L.; Wu, X. P., Periodic solutions for second order systems with not uniformly coercive potential, J. Math. Anal. Appl., 259, 2, 386-397 (2001) · Zbl 0999.34039
[16] Tang, C. L.; Wu, X. P., Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems, J. Math. Anal. Appl., 275, 2, 870-882 (2002) · Zbl 1043.34045
[17] Tang, C. L.; Wu, X. P., Notes on periodic solutions of subquadratic second order systems, J. Math. Anal. Appl., 285, 1, 8-16 (2003) · Zbl 1054.34075
[18] M. Willem, Oscillations forcées systèmes Hamiltoniens, Public. Sémin. Analyse Non Linéarie, Univ. Beseancon, 1981.; M. Willem, Oscillations forcées systèmes Hamiltoniens, Public. Sémin. Analyse Non Linéarie, Univ. Beseancon, 1981.
[19] Wu, X. P.; Tang, C. L., Periodic solutions of a class of nonautonomous second order systems, J. Math. Anal. Appl., 236, 227-235 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.