×

Blinking model and synchronization in small-world networks with a time-varying coupling. (English) Zbl 1098.82621

Summary: The paper proposes a new type of small-world networks of cells with chaotic behavior. This network consists of a regular lattice of cells with constant 2K-nearest neighbor couplings and time-dependent on–off couplings between any other pair of cells. In each time interval of duration such a coupling is switched on with probability p and the corresponding switching random variables are independent for different links and for different times. At each moment, the coupling structure corresponds to a small-world graph, but the shortcuts change from time interval to time interval, which is a good model for many real-world dynamical networks. It is to be distinguished from networks that have randomly chosen shortcuts, fixed in time. Here, we apply the Connection Graph Stability method, developed in the companion paper (”Connection graph stability method for synchronized coupled chaotic systems”, see this issue), to the study of global synchronization in this network with the time-varying coupling structure, in the case where the on–off switching is fast with respect to the characteristic synchronization time of the network. The synchronization thresholds are explicitly linked with the average path length of the coupling graph and with the probability \(p\) of shortcut switchings in this blinking model. We prove that for the blinking model, a few random shortcut additions significantly lower the synchronization threshold together with the effective characteristic path length. Short interactions between cells, as in the blinking model, are important in practice. To cite prominent examples, computers networked over the Internet interact by sending packets of information, and neurons in our brain interact by sending short pulses, called spikes. The rare interaction between arbitrary nodes in the network greatly facilitates synchronization without loading the network much. In this respect, we believe that it is more efficient than a structure of fixed random connections.

MSC:

82C99 Time-dependent statistical mechanics (dynamic and nonequilibrium)
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37N20 Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics)
92C37 Cell biology
94C99 Circuits, networks
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Milgram, S., Psychol. Today, 2, 60 (1961)
[2] Watts, D. J.; Strogatz, S. H., Nature, 393, 440 (1998)
[3] Strogatz, S. H., Nature, 410, 268 (2001)
[4] Barthélémy, M.; Amaral, L. A.N., Phys. Rev. Lett., 82, 3180 (1999)
[5] Monasson, R., Eur. Phys. J. B, 12, 555 (1999)
[6] Newman, M. E.J., J. Stat. Phys., 101, 819 (2000)
[7] Newman, M. E.J.; Moore, C.; Watts, D. J., Phys. Rev. Lett., 84, 3201 (2000)
[8] Newman, M. E.J.; Strogatz, S. H.; Watts, D. J., Phys. Rev. E, 64, 026118 (2001)
[9] Barabási, A.-L.; Albert, R., Science, 286, 509 (1999)
[10] Eckmann, J.-P.; Moses, E., Proc. Natl. Acad. Sci. U.S.A., 99, 5825 (2002)
[11] Amaral, L. A.N.; Scala, A.; Barthélémy, M.; Stanley, H. E., Proc. Natl. Acad. Sci. U.S.A., 97, 149 (2000)
[12] Newman, M. E.J., Proc. Natl. Acad. Sci. U.S.A., 98, 404 (2001)
[13] Newman, M. E.J., Phys. Rev. E, 64, 016131 (2001)
[14] Kuperman, M.; Abramson, G., Phys. Rev. Lett., 86, 2909 (2001)
[15] Miramontes, O.; Luque, B., Physica D, 168, 379 (2002)
[16] Zanette, D., Phys. Rev. E, 65, 041908 (2002)
[17] D.J. Watts, Small Worlds, Princeton University Press, Princeton, 1999.; D.J. Watts, Small Worlds, Princeton University Press, Princeton, 1999.
[18] Cancho, R. F.I.; Janssen, C.; Solé, R. V., Phys. Rev. E, 64, 046119 (2001)
[19] Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z. N.; Barabási, A.-L.; Albert, R., Nature (London), 407, 651 (2000)
[20] Lago-Fernández, L. F.; Huerta, R.; Corbacho, F.; Sigüenza, J. A., Phys. Rev. Lett., 84, 2758 (2000)
[21] Gade, P. M.; Hu, C. K., Phys. Rev. E, 62, 6409 (2000)
[22] Jost, J.; Joy, M. P., Phys. Rev. E, 65, 016201 (2001)
[23] Wang, X.; Chen, G., Int. J. Bifurcat. Chaos, 12, 187 (2002)
[24] Wang, X., Int. J. Bifurcat. Chaos, 12, 885 (2002)
[25] Barahona, M.; Pecora, L. M., Phys. Rev. Lett., 89, 054101 (2002)
[26] V. Belykh, I. Belykh, M. Hasler, Physica D, this issue.; V. Belykh, I. Belykh, M. Hasler, Physica D, this issue.
[27] Fink, K.; Johnson, G.; Carroll, T.; Mar, D.; Pecora, L., Phys. Rev. E, 61, 5080 (2000)
[28] Mills, D. L., IEEE Trans. Commun., 39, 1482 (1991)
[29] Mills, D. L., ACM Comput. Commun. Rev., 24, 16 (1994)
[30] D.-G. Holmes, T.A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, Wiley-IEEE Press, 2003.; D.-G. Holmes, T.A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, Wiley-IEEE Press, 2003.
[31] N.N. Bogoliubov, Yu.A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York, 1961.; N.N. Bogoliubov, Yu.A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York, 1961.
[32] Chernoff, H., Ann. Math. Statist., 23, 493-507 (1952)
[33] Hagerup, T.; Rub, C., Inf. Proc. Lett., 33, 305 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.