×

Projection methods for large Lyapunov matrix equations. (English) Zbl 1094.65039

Krylov subspace methods are proposed for solving large Lyapunov matrix algebraic equations of the form \(AX + XA^T + BB^T = 0\) where \(A\) and \(B\) are real \(n \times n\) and \(n \times s\) matrices, respectively, with \(s << n\). Equations of this kind appear in many problems of control theory such as computation of the Hankel singular values, model reduction and solution of matrix Riccati equations. The methods proposed are based on the Arnoldi process. It is shown how to extract low rank approximate solutions to Lyapunov equations and expressions are derived for the backward error. Two numerical experiments involving solutions of large Lyapunov equations are presented.
There is no discussion on the connection between the numerical properties of the methods proposed and the conditioning of the Lyapunov equations solved.

MSC:

65F30 Other matrix algorithms (MSC2010)
65F10 Iterative numerical methods for linear systems
15A24 Matrix equations and identities

Software:

Algorithm 432
PDFBibTeX XMLCite
Full Text: DOI

References:

[2] Bartels, R. H.; Stewart, G. W., Solution of the matrix equation \(AX + XB =C\), Comm. ACM, 15, 820-826 (1972) · Zbl 1372.65121
[3] Benner, P.; Quintana-Ortí, E., Solving stable generalized Lyapunov equations with the matrix sign function, Numer. Alg., 20, 75-100 (1999) · Zbl 0940.65035
[4] Boley, D. L., Krylov space methods on state-space control models, Circ. Syst. Signal Process., 13, 733-758 (1994) · Zbl 0833.93024
[5] de Souza, E.; Bhattacharyya, S. P., Contollability, observability and solution of \(AX − XB =C\), Linear Algebra Appl., 39, 167-188 (1981) · Zbl 0468.15012
[6] El Guennouni, A.; Jbilou, K.; Riquet, A. J., Block Krylov subspace methods for solving large Sylvester equations, Numer. Alg., 29, 75-96 (2002) · Zbl 0992.65040
[7] Glover, K.; Limebeer, D. J.N.; Doyle, J. C.; Kasenally, E. M.; Safonov, M. G., A characterisation of all solutions to the four block general distance problem, SIAM J. Control Optim., 29, 283-324 (1991) · Zbl 0736.93015
[8] Golub, G. H.; Nash, S.; Van Loan, C., A Hessenberg-Schur method for the problem \(AX + XB =C\), IEEE Trans. Autom. Control AC, 24, 909-913 (1979) · Zbl 0421.65022
[9] Hammarling, S. J., Numerical solution of the stable, nonnegative definite Lyapunov equation, IMA J. Numer. Anal., 2, 303-323 (1982) · Zbl 0492.65017
[10] Hartwig, R. E., Resultants and the solution of AXXB=−\(C\), SIAM J. Appl. Math., 23, 1, 104-117 (1972) · Zbl 0222.15007
[11] Hu, D. Y.; Reichel, L., Krylov subspace methods for the Sylvester equation, Linear Algebra Appl., 174, 283-314 (1992) · Zbl 0777.65028
[12] Jaimoukha, I. M.; Kasenally, E. M., Krylov subspace methods for solving large Lyapunov equations, SIAM J. Matrix Anal. Appl., 31, 1, 227-251 (1994) · Zbl 0798.65060
[13] Jaimoukha, I. M.; Kasenally, E. M., Oblique projection methods for large scale model reduction, SIAM J. Matrix Anal. Appl., 16, 2, 602-627 (1995) · Zbl 0827.65073
[15] Jbilou, K.; Messaoudi, A.; Sadok, H., Global FOM and GMRES algorithms for matrix equations, Appl. Num. Math., 31, 49-63 (1999) · Zbl 0935.65024
[16] Lasalle, J.; Lefschetz, S., Stability of Lyapunov Direct Methods (1961), Academic Press: Academic Press New York
[18] Lu, A.; Wachspress, E. L., Solution of Lyapunov equations by alternating direction implicit iteration, Comput. Math. Appl., 21, 43-58 (1991) · Zbl 0724.65041
[19] Moore, B. C., Principal component analysis in linear systems: controllability, observability and model reduction, IEEE Trans. Auto. Control AC, 26, 17-31 (1981) · Zbl 0464.93022
[20] Penzl, T., A cyclic low rank Smith method for large sparse Lyapunov equations, SIAM J. Sci. Comput., 21, 4, 1401-1418 (2000) · Zbl 0958.65052
[21] Saad, Y., Numerical solution of large Lyapunov equations, (Kaashoek, M. A.; Van Shuppen, J. H.; Ran, A. C., Signal Processing, Scattering, Operator Theory and Numerical Methods (1990), Birkhaüser: Birkhaüser Boston), 503-511
[22] Saad, Y., Iterative Methods for Sparse Linear Systems (1995.), PWS Press: PWS Press New York
[23] Sadkane, M., Block Arnoldi and Davidson methods for unsymmetric large eigenvalue problems, Numer. Math., 64, 687-706 (1993) · Zbl 0791.65021
[24] Simoncini, V.; Gallopoulos, E., Convergence properties of block GMRES and matrix polynomials, Linear Algebra Appl., 247, 97-119 (1996) · Zbl 0861.65023
[25] Smith, R. A., Matrix calculations for Liapunov quadratic forms, J. Different. Eqs., 2, 208-217 (1966) · Zbl 0151.02206
[26] Van Dooren, P., Gramian based model reduction of large-scale dynamical systems, (Numerical Analysis (2000), Chapman and Hall, CRC Press: Chapman and Hall, CRC Press London), 231-247 · Zbl 0952.65051
[27] Van Loan, C., The sensitivity of the matrix exponential, SIAM J. Numer. Anal., 14, 971-981 (1977) · Zbl 0368.65006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.