×

Constructing accurate and parsimonious fuzzy models with distinguishable fuzzy sets based on an entropy measure. (English) Zbl 1092.68658

Summary: Parsimony is very important in system modeling as it is closely related to model interpretability. A scheme for constructing accurate and parsimonious fuzzy models by generating distinguishable fuzzy sets is proposed, in which the distinguishability of input space partitioning is measured by a so-called “local” entropy. By maximizing this entropy measure the optimal number of merged fuzzy sets with good distinguishability can be obtained, which leads to a parsimonious input space partitioning while preserving the information of the original fuzzy sets as much as possible. Different from the existing merging algorithms, the proposed scheme takes into account the information provided by input-output samples to optimize input space partitioning. Furthermore, this scheme possesses the ability to seek a balance between the global approximation ability and distinguishability of input space partitioning in constructing Takagi-Sugeno (TS) fuzzy models. Experimental results have shown that this scheme is able to produce accurate and parsimonious fuzzy models with distinguishable fuzzy sets.

MSC:

68T05 Learning and adaptive systems in artificial intelligence

Software:

ASMOD; ANFIS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bezdek, J. C., Pattern Recognition with Fuzzy Objective Function Algorithms (1981), Plenum Press: Plenum Press New York · Zbl 0503.68069
[2] J. Casillas, O. Cordón, F. Herrera, L. Magdalena (Ed.), Interpretability Issues in Fuzzy Modeling, Studies in Fuzziness and Soft Computing, vol. 128, Springer, Heidelberg, 2003.; J. Casillas, O. Cordón, F. Herrera, L. Magdalena (Ed.), Interpretability Issues in Fuzzy Modeling, Studies in Fuzziness and Soft Computing, vol. 128, Springer, Heidelberg, 2003. · Zbl 1015.00012
[3] Castellano, G.; Fanelli, A. M.; Mencar, C., Generation of interpretable fuzzy granules by a double-clustering technique, Arch. Control Sci., 12, 4, 397-410 (2002), (Special Issue on Granular Computing) · Zbl 1151.93352
[4] G. Castellano, A.M. Fanelli, C. Mencar, Similarity vs. possibility in measuring fuzzy sets distinguishability, Proc. 5th Internat. Conf. on Recent Advances in Soft Computing (RASC), 16-18 December 2004, Nottingham, UK.; G. Castellano, A.M. Fanelli, C. Mencar, Similarity vs. possibility in measuring fuzzy sets distinguishability, Proc. 5th Internat. Conf. on Recent Advances in Soft Computing (RASC), 16-18 December 2004, Nottingham, UK.
[5] de Oliveira, J. V., Semantic constraints for membership function optimization, IEEE Trans. Syst. Man Cybernet.—Part A, 29, 1, 128-138 (1999)
[6] Dempster, A. P.; Laird, N. M.; Rubin, D. B., Maximum likelihood from incomplete data via the EM algorithm (with discussions), J. Roy. Statist. Soc. B, 39, 1-39 (1977) · Zbl 0364.62022
[7] Dubois, D.; Prade, H., Fuzzy Sets and Systems: Theory and Applications (1980), Academic: Academic New York · Zbl 0444.94049
[8] Espinosa, J.; Vandewalle, J., Constructing fuzzy models with linguistic integrity from numerical data-AFRELI algorithm, IEEE Trans. Fuzzy Systems, 8, 5, 591-600 (2000)
[9] T. Furuhashi, T. Suzuki, On interpretability of fuzzy models based on conciseness measure, Proc. of the 10th IEEE Internat. Conf. on Fuzzy Sets (FUZZ-IEEE’01), Melbourne, Australia, December 2001.; T. Furuhashi, T. Suzuki, On interpretability of fuzzy models based on conciseness measure, Proc. of the 10th IEEE Internat. Conf. on Fuzzy Sets (FUZZ-IEEE’01), Melbourne, Australia, December 2001.
[10] Gan, Q.; Harris, C. J., Fuzzy local linearization and local basis function expansion in nonlinear system modeling, IEEE Trans. Syst. Man Cybernet.—Part B, 29, 4, 559-565 (1999)
[11] Gan, Q.; Harris, C. J., A hybrid learning scheme combining EM and MASMOD algorithms for fuzzy local linearization modeling, IEEE Trans. Neural Networks, 12, 1, 43-53 (2001)
[12] Gath, I.; Geva, A. B., Unsupervised optimal fuzzy clustering, IEEE Trans. Pattern Anal. Mach. Intell., 11, 7, 773-781 (1989) · Zbl 0709.62592
[13] Guillaume, S., Designing fuzzy inference systems from data: an interpretability-oriented review, IEEE Trans. Fuzzy Systems, 9, 3, 426-443 (2001)
[14] Harris, C. J.; Hong, X.; Gan, Q., Adaptive Modeling, Estimation and Fusion from Data: A Neurofuzzy Approach (2002), Springer: Springer Berlin · Zbl 1005.68048
[15] F. Hoppner, F. Klawonn, A new approach to fuzzy partitioning, Proc. of the Joint 9th IFSA Congr. and 20th NAFIPS Internat. Conf., Vancouver, Canada, 2001, pp. 1419-1424.; F. Hoppner, F. Klawonn, A new approach to fuzzy partitioning, Proc. of the Joint 9th IFSA Congr. and 20th NAFIPS Internat. Conf., Vancouver, Canada, 2001, pp. 1419-1424.
[16] Jang, J.-S. R., ANFIS: Adaptive-network-based fuzzy inference system, IEEE Trans. Syst. Man Cybernet., 23, 3, 665-685 (1993)
[17] Jin, Y.; Sendhoff, B., Extracting interpretable fuzzy rules from RBF networks, Neural Process. Lett., 17, 2, 149-164 (2003) · Zbl 1038.68097
[18] Kapur, J. N.; Sahoo, P. K.; Wong, A. K.C., A new method for grey-level picture thresholding using the entropy of the histogram, Comput. Vision Graphics Image Process., 29, 3, 273-285 (1985)
[19] Kavli, T., ASMOD-An algorithm for adaptive spline modeling of observation data, Internat. J. Control, 58, 4, 947-967 (1993) · Zbl 0786.93016
[20] Roubos, J. A.; Setnes, M.; Abonyi, J., Learning fuzzy classification rules from labeled data, Internat. J. Inform. Sci., 150, 1-2, 77-93 (2003)
[21] Setnes, M.; Babuska, R.; Kaymak, U.; van Nauta Lemke, H. R., Similarity measures in fuzzy rule base simplification, IEEE Trans. Syst. Man Cybernet.—Part B, 28, 3, 376-386 (1998)
[22] Setnes, M.; Babuska, R.; Verbruggen, H. B., Rule-based modeling: precision and transparency, IEEE Trans. Syst. Man Cybernet.—Part C, 28, 1, 165-169 (1998)
[23] T. Suzuki, T. Furuhashi, Conciseness of fuzzy models, in: J. Casillas, O. Cordón, F. Herrera, L. Magdalena (Ed.), Interpretability Issues in Fuzzy Modeling, Studies in Fuzziness and Soft Computing, vol. 128, Springer, Heidelberg, 2003.; T. Suzuki, T. Furuhashi, Conciseness of fuzzy models, in: J. Casillas, O. Cordón, F. Herrera, L. Magdalena (Ed.), Interpretability Issues in Fuzzy Modeling, Studies in Fuzziness and Soft Computing, vol. 128, Springer, Heidelberg, 2003. · Zbl 1037.93009
[24] Takagi, T.; Sugeno, M., Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst. Man Cybernet., 15, 1, 116-132 (1985) · Zbl 0576.93021
[25] H. Wang, S. Kwong, Y. Jin, W. Wei, K. Man, Agent-based evolutionary approach to interpretable rule-based knowledge extraction, IEEE Trans. Syst. Man Cybernet.—Part C 2005, in press.; H. Wang, S. Kwong, Y. Jin, W. Wei, K. Man, Agent-based evolutionary approach to interpretable rule-based knowledge extraction, IEEE Trans. Syst. Man Cybernet.—Part C 2005, in press. · Zbl 1071.68550
[26] Wang, L.-X., Adaptive Fuzzy Systems and Control (1994), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ
[27] Wang, X. Z.; Chen, B.; Qian, G.; Ye, F., On the optimization of fuzzy decision trees, Fuzzy Sets and Systems, 112, 1, 117-125 (2000)
[28] Yen, J.; Wang, L.; Gillespie, C. W., Improving interpretability of TSK fuzzy models by combining global learning and local learning, IEEE Trans. Fuzzy Systems, 6, 4, 530-537 (1998)
[29] S.-M. Zhou, J.Q. Gan, Improving the interpretability of Takagi-Sugeno fuzzy model by using linguistic modifiers and a multiple objective learning scheme, Proc. Internat. Joint Conf. on Neural Networks (IJCNN’04), Budapest, Hungary, 2004, pp. 2385-2390.; S.-M. Zhou, J.Q. Gan, Improving the interpretability of Takagi-Sugeno fuzzy model by using linguistic modifiers and a multiple objective learning scheme, Proc. Internat. Joint Conf. on Neural Networks (IJCNN’04), Budapest, Hungary, 2004, pp. 2385-2390.
[30] Zwick, R.; Carlstein, E.; Budescu, D. V., Measures of similarity among fuzzy concepts: a comparative analysis, Internat. J. Approx. Reason., 1, 2, 221-242 (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.