×

Convolution quadrature time discretization of fractional diffusion-wave equations. (English) Zbl 1090.65147

The authors present the convolution quadrature time discretization of fractional diffusion-wave equation. They write the integro partial differential equation as an abstract parabolic evolution equation in a Banach space and present convolution quadrature. First the numerical method is considered in the setting of linear nonhomogeneous problems. then they comment on the class of nonlinear problems and the regularity of their solutions. A numerical method for the nonlinear problems is given. Numerical experiments are presented.

MSC:

65R20 Numerical methods for integral equations
26A33 Fractional derivatives and integrals
45K05 Integro-partial differential equations
45G10 Other nonlinear integral equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Ashyralyev and P. E. Sobolevskiĭ, Well-posedness of parabolic difference equations, Operator Theory: Advances and Applications, vol. 69, Birkhäuser Verlag, Basel, 1994. Translated from the Russian by A. Iacob.
[2] Nikolai Yu. Bakaev, Vidar Thomée, and Lars B. Wahlbin, Maximum-norm estimates for resolvents of elliptic finite element operators, Math. Comp. 72 (2003), no. 244, 1597 – 1610. · Zbl 1028.65113
[3] M. P. Calvo and C. Palencia, Avoiding the order reduction of Runge-Kutta methods for linear initial boundary value problems, Math. Comp. 71 (2002), no. 240, 1529 – 1543. · Zbl 1005.65100
[4] C. Chen and T. Shi, Finite Element Methods for Integro-Differential Equations. World Scientific, Singapore, 1997.
[5] C. Chen, V. Thomée, and L. B. Wahlbin, Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel, Math. Comp. 58 (1992), no. 198, 587 – 602. · Zbl 0766.65120
[6] Michel Crouzeix, On multistep approximation of semigroups in Banach spaces, Proceedings of the 2nd international conference on computational and applied mathematics (Leuven, 1986), 1987, pp. 25 – 35. · Zbl 0632.65067 · doi:10.1016/0377-0427(87)90123-3
[7] E. Cuesta and C. Palencia, A fractional trapezoidal rule for integro-differential equations of fractional order in Banach spaces, Appl. Numer. Math. 45 (2003), no. 2-3, 139 – 159. · Zbl 1023.65151 · doi:10.1016/S0168-9274(02)00186-1
[8] E. Cuesta and C. Palencia, A numerical method for an integro-differential equation with memory in Banach spaces: qualitative properties, SIAM J. Numer. Anal. 41 (2003), no. 4, 1232 – 1241. · Zbl 1054.65131 · doi:10.1137/S0036142902402481
[9] Yasuhiro Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation, Osaka J. Math. 27 (1990), no. 2, 309 – 321. · Zbl 0790.45009
[10] Yasuhiro Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation. II, Osaka J. Math. 27 (1990), no. 4, 797 – 804. · Zbl 0796.45010
[11] C. González and C. Palencia, Stability of Runge-Kutta methods for abstract time-dependent parabolic problems: the Hölder case, Math. Comp. 68 (1999), no. 225, 73 – 89. · Zbl 0909.65030
[12] A. Hanyga, Wave propagation in media with singular memory, Math. Comput. Modelling 34 (2001), no. 12-13, 1399 – 1421. Topics in the mathematical modelling of smart materials. · Zbl 1011.74033 · doi:10.1016/S0895-7177(01)00137-6
[13] Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. · Zbl 0456.35001
[14] R. Hilfer , Applications of fractional calculus in physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. · Zbl 0998.26002
[15] Marie-Noëlle Le Roux, Semidiscretization in time for parabolic problems, Math. Comp. 33 (1979), no. 147, 919 – 931. · Zbl 0417.65049
[16] Stig Larsson, Vidar Thomée, and Lars B. Wahlbin, Finite-element methods for a strongly damped wave equation, IMA J. Numer. Anal. 11 (1991), no. 1, 115 – 142. · Zbl 0718.65070 · doi:10.1093/imanum/11.1.115
[17] J. C. López Marcos, A difference scheme for a nonlinear partial integrodifferential equation, SIAM J. Numer. Anal. 27 (1990), no. 1, 20 – 31. · Zbl 0693.65097 · doi:10.1137/0727002
[18] Ch. Lubich, Discretized fractional calculus, SIAM J. Math. Anal. 17 (1986), no. 3, 704 – 719. · Zbl 0624.65015 · doi:10.1137/0517050
[19] Ch. Lubich, Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Math. Comp. 45 (1985), no. 172, 463 – 469. · Zbl 0584.65090
[20] Ch. Lubich, On the numerical solution of Volterra equations with unbounded nonlinearity, J. Integral Equations 10 (1985), no. 1-3, suppl., 175 – 183. Integro-differential evolution equations and applications (Trento, 1984). · Zbl 0598.65039
[21] C. Lubich, Convolution quadrature and discretized operational calculus. I, Numer. Math. 52 (1988), no. 2, 129 – 145. · Zbl 0637.65016 · doi:10.1007/BF01398686
[22] Christian Lubich, Convolution quadrature revisited, BIT 44 (2004), no. 3, 503 – 514. · Zbl 1083.65123 · doi:10.1023/B:BITN.0000046813.23911.2d
[23] Christian Lubich and Achim Schädle, Fast convolution for nonreflecting boundary conditions, SIAM J. Sci. Comput. 24 (2002), no. 1, 161 – 182. · Zbl 1013.65113 · doi:10.1137/S1064827501388741
[24] Ch. Lubich, I. H. Sloan, and V. Thomée, Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term, Math. Comp. 65 (1996), no. 213, 1 – 17. · Zbl 0852.65138
[25] Francesco Mainardi and Paolo Paradisi, Fractional diffusive waves, J. Comput. Acoust. 9 (2001), no. 4, 1417 – 1436. · Zbl 1360.76272 · doi:10.1142/S0218396X01000826
[26] W. McLean and V. Thomée, Numerical solution of an evolution equation with a positive-type memory term, J. Austral. Math. Soc. Ser. B 35 (1993), no. 1, 23 – 70. · Zbl 0791.65105 · doi:10.1017/S0334270000007268
[27] W. McLean, V. Thomée, and L. B. Wahlbin, Discretization with variable time steps of an evolution equation with a positive-type memory term, J. Comput. Appl. Math. 69 (1996), no. 1, 49 – 69. · Zbl 0858.65143 · doi:10.1016/0377-0427(95)00025-9
[28] Ralf Metzler and Joseph Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 77. · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[29] R. Metzler and J. Klafter, Accelerating Brownian motion: a fractional dynamics approach to fast diffusion, Europhys. Lett. 51 (2000) 492-498.
[30] C. Palencia, The sharp resolvent estimates for the one-dimensional discrete Laplacian (in preparation).
[31] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. · Zbl 0516.47023
[32] Igor Podlubny, Fractional differential equations, Mathematics in Science and Engineering, vol. 198, Academic Press, Inc., San Diego, CA, 1999. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. · Zbl 0924.34008
[33] Jan Prüss, Evolutionary integral equations and applications, Monographs in Mathematics, vol. 87, Birkhäuser Verlag, Basel, 1993. · Zbl 0784.45006
[34] Bertram Ross, Fractional calculus, Math. Mag. 50 (1977), no. 3, 115 – 122. An historical apologia for the development of a calculus using differentiation and antidifferentiation of non-integral orders. · Zbl 0371.26004 · doi:10.2307/2689497
[35] J. M. Sanz-Serna, A numerical method for a partial integro-differential equation, SIAM J. Numer. Anal. 25 (1988), no. 2, 319 – 327. · Zbl 0643.65098 · doi:10.1137/0725022
[36] T. Tang, A finite difference scheme for partial integro-differential equations with a weakly singular kernel, Appl. Numer. Math. 11 (1993), no. 4, 309 – 319. · Zbl 0768.65093 · doi:10.1016/0168-9274(93)90012-G
[37] T. Tang, A note on collocation methods for Volterra integro-differential equations with weakly singular kernels, IMA J. Numer. Anal. 13 (1993), no. 1, 93 – 99. · Zbl 0765.65126 · doi:10.1093/imanum/13.1.93
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.