×

On the dynamics of a degenerate parabolic equation: global bifurcation of stationary states and convergence. (English) Zbl 1090.35035

This work is concerned with the following semilinear parabolic equation \[ \partial_t\phi-\text{div}(\sigma(x)\nabla\phi)-\lambda\phi+| \phi| ^{2\gamma}\phi=0, \quad x\in\Omega,t>0 \] under the initial-boundary conditions \[ \phi(x,0)=\phi_0(x),\quad x\in\Omega, \] and \[ \phi| _{\partial\Omega}=0,\quad t>0 \] on a bounded or unbounded domain \(\Omega\subseteq{\mathbb R}^N\), \(N>1\), which can be derived as a model for neutron diffusion. The problem is allowed to be degenerated in the sense that the diffusion coefficient \(\sigma\in L_{\text{loc}}^1\) is allowed to be unbounded or to possess at most a finite number of essential zeros.
Under a smallness condition on \(\gamma>0\) the two main results of the paper are as follows:
(1) On a \(\sigma\)-weighted Sobolev space as phase space, the above equation generates a semiflow with global attractor. Moreover, it is a gradient system and any solution converges to an equilibrium as \(t\to\infty\).
(2) For bounded, as well as for unbounded domains, the existence of a global branch of nonnegative stationary states for the corresponding stationary problem is established, when \(\lambda\) serves as bifurcation parameter.
In case of bounded domains, these results imply that any solution with nonnegative initial condition converges to the zero or the nonnegative equilibrium.
Finally, possible applications to degenerated semilinear and quasilinear elliptic equations are indicated.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35B41 Attractors
35R05 PDEs with low regular coefficients and/or low regular data
35K65 Degenerate parabolic equations
35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abdellaoui, B., Peral, I.: On quasilinear elliptic equations related to some Caffarelli-Kohn-Nirenberg inequalities. Commun. Pure Appl. Anal. 2(4), 539–566 (2003) · Zbl 1148.35324
[2] Allegretto, W.: Sturm theorems for degenerate elliptic equations. Proc. Amer. Math. Soc. 129(10), 165–174 (2001) · Zbl 0982.35007
[3] Allegretto, W., Huang, Y.X.: A Picone’s identity for the p-laplacian and applications. Nonlinear Analysis TMA 32(7), 819–830 (1998) · Zbl 0930.35053
[4] Allegretto, W., Huang, Y.X.: Principal eigenvalues and Sturm comparison via Picone’s identity. J. Differential Equations 156, 427–438 (1999) · Zbl 0937.35117
[5] Ambrosetti, A., Gámez, J.L.: Branches of positive solutions for some semilinear Schrödinger equations. Math. Z. 224, 347–362 (1997) · Zbl 0956.35039
[6] Arcoya, D., Gámez, J.L.: Bifurcation theory and related problems: Anti-maximum principle and resonance. Comm. Partial Differential Equations 26(9–10), 1879–1911 (2001) · Zbl 1086.35010
[7] Auchmuty, J.F.G.: Lyapunov methods and equations of parabolic type, nonlinear problems in the physical sciences and biology. Lectures Notes in Mathematics 332 Springer-Verlag (1973) · Zbl 0269.35057
[8] Babin, A.V., Vishik, M.I.: Attractors for partial differential evolution equations in an unbounded domain. Proc. Roy. Soc. Edinb. 116A, 221–243 (1990) · Zbl 0721.35029
[9] Ball, J.M.: Strongly continuous semigroups, weak solutions, and the variation of constants formula. Proc. Amer. Math. Soc. 64, 370–373 (1977) · Zbl 0353.47017
[10] Ball, J.M.: Remarks on the blow-up and nonexistence theorems for nonlinear evolution equations. Quart. J. Math. Oxford 2(28), 473–486 (1977) · Zbl 0377.35037
[11] Ball, J.M.: On the asymptotic behavior of generalized processes with applications to nonlinear evolution equations. J. Differential Equations 27, 224–265 (1978) · Zbl 0376.35002
[12] Ball, J.M.: Continuity properties and attractors of generalized semiflows and the Navier-Stokes equations. J. Nonlinear Science 7, 475–502 (1997) · Zbl 0903.58020
[13] Ball, J.M.: Global attractors for damped semilinear wave equations. Discrete Cont. Dyn. Syst. Series A. 10(1–2), 31–52 (2004) · Zbl 1056.37084
[14] Beardmore, R.E., Laister, R.: Sequential and continuum bifurcations in degenerate elliptic equations. Proc. Amer. Math. Soc. 132(1), 165–174 (2004) · Zbl 1054.34028
[15] Bouffoni, B., Tolland, J.: Analytic Theory of Blobal Bifurcation: An Introduction. Princeton University Press (2003)
[16] Brown, K.J., Stavrakakis, N.M.: Global bifurcation results for a semilinear elliptic equation on all of \(\mathbb{R}\)N. Duke Math. J. 85, 77–94 (1996) · Zbl 0862.35010
[17] Busca, J., Jendoubi, M.A., Poláčik, P.: Convergence to equilibrium for semilinear parabolic problems in \(\mathbb{R}\)N. Comm. Partial Differential Equations 27(9–10), 1793–1814 (2002) · Zbl 1021.35013
[18] Caldiroli, P., Musina, R.: On a variational degenerate elliptic problem. Nonlinear Differ. Equ. Appl. 7, 187–199 (2000) · Zbl 0960.35039
[19] Caldiroli, P., Musina, R.: Existence and nonexistence results for a class of nonlinear singular sturm-liouville equations. Advances in Differential Equations 6(3), 303–326 (2001) · Zbl 1032.34034
[20] Catrina, F., Wang, Z.-Q.: On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence) and symmetry of extremal functions. Comm. Pure Appl. Math. 54(2), 229–258 (2001) · Zbl 1072.35506
[21] Cazenave, T.: An introduction to nonlinear Schrödinger equations, textos des métodos matemáticos 26. I.M.U.F.R.J., Rio de Janeiro (1996)
[22] Cazenave, T., Haraux, A.: Introduction to semilinear evolution equations. Oxford Lecture Series in Mathematics and its Applications, vol. 13 (1998) · Zbl 0926.35049
[23] Chapman, S.J., Ridhardson, G.: Vortex pining by inhomogeneities in type-II superconductors. Phys. D 108, 397–407 (1997) · Zbl 1039.82510
[24] Craig, W., Kappeler, T., Strauss, W.: Microlocal dispersive smoothing for the Schrödinger equation. Comm. Pure Appl. Math. 48, 769–860 (1995) · Zbl 0856.35106
[25] Dancer, E.N.: On the number of positive solutions of some weakly nonlinear equations on annular regions. Math. Z. 206, 551–562 (1991) · Zbl 0719.35026
[26] Dancer, E.N.: Superlinear problems on domains with holes of asymptotic shape and exterior problems. Math. Z. 229, 475–491 (1998) · Zbl 0933.35068
[27] Dautray, R., Lions, J.L.: Mathematical analysis and numerical methods for science and technology, vol. I: Physical origins and classical methods. Springer-Verlag, Berlin (1985)
[28] Drábek, P., Huang, Y.X.: Perturbed p-Laplacian in \(\mathbb{R}\)N: Bifurcation from the principal eigenvalue. J. Math. Anal. Appl. 204(2), 582–608 (1996) · Zbl 0874.35034
[29] Drábek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations with Degenerations and Singularities. Walter De Gruyter & Co., Berlin (1997) · Zbl 0894.35002
[30] Eidus, D., Kamin, S.: The filtration equation, in a class of functions decreasing at infinity. Proc. Amer. Math. Soc. 120(3), 825–830 (1994) · Zbl 0791.35065
[31] Eden, A., Michaux, B., Rakotoson, J.M.: Doubly nonlinear parabolic equations as dynamical systems. J. Dynamics Differential Equations 3(1), 87–131 (1991) · Zbl 0802.35011
[32] Esteban, M.J., Giacomoni, J.: Existence of global branches of positive solutions for semilinear elliptic gegenerate problems. J. Math. Pures Appl. 79(7), 715–740 (2000) · Zbl 0952.35060
[33] Feireisl, E., Laurencot, Ph., Simondon, F.: Global attractors for degenerate parabolic equations on unbounded domains. J. Differential Equations 129(2), 239–261 (1996) · Zbl 0862.35058
[34] Feiresl, E., Simondon, F.: Convergence for degenerate parabolic equations. J. Differential Equations 152, 439–466 (1999) · Zbl 0928.35086
[35] Felli, V., Schneider, M.: Pertubation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type. J. Differential Equations 191, 121–142 (2003) · Zbl 1088.35023
[36] Gaididei, Y., Lazarides, N., Flytzanis, N.: Fluxons in a superlattice of Josephson junctions: dynamics and radiation. J. Phys. A 36(10), 2423–2441 (2003) · Zbl 1057.81570
[37] Gaididei, Y., Lazarides, N., Flytzanis, N.: Static fluxons in a superlattice of Josephson junctions. J. Phys. A 35(48), 10409–10427 (2002) · Zbl 1040.82509
[38] Giacomoni, J.: Global bifurcation results for semilinear elliptic problems in \(\mathbb{R}\)N. Comm. Partial Differential Equations 23(11–12), 1875–1927 (1998) · Zbl 0920.35023
[39] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 Edition. Springer-Verlag, Berlin-Heidelberg, New York (2001) · Zbl 1042.35002
[40] Gómez-Reñasco, R., López-Gómez, J.: The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction-diffusion equations. J. Differential Equations 167, 36–72 (2000) · Zbl 0965.35061
[41] Hale, J.K.: Asymptotic behaviour of dissipative Systems. Mathematical Surveys and Monographs 25 Amer. Math. Soc., Providence, R.I. (1988)
[42] Hale, J.K., Rocha, C.: Varying boundary conditions and large diffusivity. J. Math. Pures Appl. 66, 139–158 (1987) · Zbl 0557.35078
[43] Hale, J.K., Raugel, G.: Reaction diffusion equations on thin domains. J. Math. Pures Appl. 71, 35–91 (1992) · Zbl 0785.35050
[44] Hale, J.K., Raugel, G.: Convergence in gradient-like systems with applications to PDE’S. Z. Angew. Math. Phys. 43, 63–124 (1992) · Zbl 0751.58033
[45] Haraux, A., Jendoubi, M.A.: Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity. J. Differential Equations 144, 302–312 (1998) · Zbl 0915.34060
[46] Haraux, A., Jendoubi, M.A.: Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity. Calc. Var. 9, 95–124 (1999) · Zbl 0939.35122
[47] Hulshof, J., Mitidieri, E., Vandervorst, R.: Strongly indefinite systems with critical exponents. Trans. Amer. Math. Soc. 350, 2349–2365 (1998) · Zbl 0908.35034
[48] Jendoubi, M.A.: A simple unified approach to some convergence theorems of L. Simon. J. Funct. Anal. 153, 187–202 (1998) · Zbl 0895.35012
[49] Jian, H., Song, B.: Vortex dynamics of Ginzburg-Landau equations in inhomogeneous superconductors. J. Differential Eqnuations 170, 173–141 (2001) · Zbl 0973.35176
[50] Jimbo, S., Morita, Y.: Stable vortex solutions to the Ginzburg-Landau equation with a variable coefficient in a disk. J. Differential Equations 155, 153–176 (1999) · Zbl 0928.35047
[51] Kamin, S., Rosenau, P.: Propagation of thermal waves in an inhomogeneous medium. Comm. Pure Appl. Math. 34, 831–852 (1981) · Zbl 0467.35051
[52] Kamin, S., Rosenau, P.: Nonlinear thermal evolution in an inhomogeneous medium. J. Math. Physics 23(7), 1385–1390 (1982) · Zbl 0499.76111
[53] Kamin, S., Kersner, R.: Disappearance of interfaces in finite time. Meccanica 28, 117–120 (1993) · Zbl 0786.76088
[54] Kielhöfer, H.: Bifurcation theory. an introduction with applications to PDEs. Springer-Verlag, New York-Berlin-Heidelberg (2004) · Zbl 1032.35001
[55] Karachalios, N.I., Zographopoulos, N.B.: Convergence towards attractors for a degenerate Ginzburg-Landau equation. Z. Angew. Math. Phys. 56(1), 11–30 (2005) · Zbl 1181.35133
[56] Kastenberg, W.E.: Stability Analysis of Nonlinear Space Dependent Reactor Kinetics. Adv. in Nucl. Science and Tech. 5, Academic Press, New-York (1969)
[57] Lions, P.L.: Structure of the set of the steady-state solutions and asymptotic behavior of semilinear heat equations. J. Differential Equations 53, 362–386 (1984) · Zbl 0533.35051
[58] López-Gómez, J.: Varying bifurcation diagrams of positive solutions for a class of indefinite superlinear boundary value problems. Trans. Amer. Math. Soc. 352(4), 1825–1858 (1999) · Zbl 0940.35095
[59] Matano, H.: Nonincrease of the lap number of a solution for a one-dimensional semilinear parabolic equation. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29, 401–444 (1982) · Zbl 0496.35011
[60] Matano, H.: Convergence of solutions of one-dimensional semilinear heat equation. J. Math. Kyoto Univ. 18, 221–227 (1978) · Zbl 0387.35008
[61] Murray, J.D.: Mathematical Biology, II: Spatial Models and Biomedical Applications. Springer-Verlag, New York-Berlin-Heidelberg (2003) · Zbl 1006.92002
[62] Orsina, L., Prignet, A.: Strong Stability Results for Solutions of Elliptic Equations with Power-like Lower Order Terms and Measure Data. J. Funct. Anal. 189, 549–566 (2002) · Zbl 1012.35030
[63] Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences 44, Springer-Verlag, New York (1983) · Zbl 0516.47023
[64] Poláčik, P.: Parabolic equations: Asymptotic behavior and dynamics on invariant manifolds. Handbook of Dynamical Systems III: Towards applications, Fiedler, B. (ed.), 835–883 Elsevier, Amsterdam (2002) · Zbl 1002.35001
[65] Pucci, P., Serrin, J.: The strong maximum principle revisited (review). J. Differential. Equations 196, 1–66 (2004) · Zbl 1109.35022
[66] Rabier, P.J., Stuart, C.A.: Global bifurcation for quasilinear elliptic equations on \(\mathbb{R}\)N. Math. Z. 237, 85–124 (2001) · Zbl 1018.35033
[67] Rabier, P.J., Stuart, C.A.: Applications of elliptic regularity to bifurcation in stationary nonlinear Schrödinger equations. Nonlinear Analysis TMA 52, 869–890 (2003) · Zbl 1034.35036
[68] Rabinovitz, P.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971) · Zbl 0212.16504
[69] Stavrakakis, N.M., Zographopoulos, N.B.: Bifurcation results for the mean curvature equations defined on all \(\mathbb{R}\)N. Geom. Dedicata 91, 71–84 (2002) · Zbl 0999.35008
[70] Sulem, C., Sulem, P.L.: The nonlinear Schrödinger equation. Applied Mathematical Sciences 139, Springer-Verlag (1999) · Zbl 0928.35157
[71] Temam, R.: Infinite dimensional dynamical systems in mechanics and physics, 2nd ed. Springer-Verlag, New York (1997) · Zbl 0871.35001
[72] Wang, B.: Attractors for reaction-diffusion equations in unbounded domains. Physica D 128, 41–52 (1999) · Zbl 0953.35022
[73] Zeidler, E.: Nonlinear Functional Analysis and Its Applications, Vols I, II (Fixed Point Theorems, Monotone Operators). Springer-Verlag, Berlin, (1990) · Zbl 0684.47029
[74] Zelenyak, T.J.: Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable. Differentsial’nye Uravneniya 4, 17–22 (1968) · Zbl 0232.35053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.