×

Variational solutions for partial differential equations driven by a fractional noise. (English) Zbl 1089.35097

Summary: We develop an existence and uniqueness theory of variational solutions for a class of nonautonomous stochastic partial differential equations of parabolic type defined on a bounded open subset \(D \subset \mathbb R^d\) and driven by an infinite-dimensional multiplicative fractional noise. We introduce two notions of such solutions for them and prove their existence and their indistinguishability by assuming that the noise is derived from an \(L^{2}(D)\)-valued fractional Wiener process \(W^{\mathrm H}\) with Hurst parameter \(\text{H} \in (\frac{1}{\gamma+1},1)\), whose covariance operator satisfies appropriate integrability conditions, and where \(\gamma \in (0,1]\) denotes the Hölder exponent of the derivative of the nonlinearity in the stochastic term of the equations. We also prove the uniqueness of solutions when the stochastic term is an affine function of the unknown random field. Our existence and uniqueness proofs rest upon the construction and the convergence of a suitable sequence of Faedo-Galerkin approximations, while our proof of indistinguishability is based on certain density arguments as well as on new continuity properties of the stochastic integral we define with respect to \(W^{\mathrm H}\)

MSC:

35R60 PDEs with randomness, stochastic partial differential equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35A15 Variational methods applied to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R.A. Adams, Sobolev Spaces, Pure and Applied Mathematics Series, vol. 65, Academic Press, New York, 1978.; R.A. Adams, Sobolev Spaces, Pure and Applied Mathematics Series, vol. 65, Academic Press, New York, 1978.
[2] Alòs, E.; Mazet, O.; Nualart, D., Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than \(\frac{1}{2} \), Stochastic Process. Appl., 86, 121-139 (2000) · Zbl 1028.60047
[3] Alòs, E.; Mazet, O.; Nualart, D., Stochastic calculus with respect to Gaussian processes, Ann. Probab., 29, 766-801 (2001) · Zbl 1015.60047
[4] Alòs, E.; Nualart, D., Stochastic integration with respect to the fractional Brownian motion, Stochastics Stochastics Rep., 75, 129-152 (2003) · Zbl 1028.60048
[5] Bergé, B.; Chueshov, I. D.; Vuillermot, P.-A., On the behavior of solutions to certain parabolic SPDE’s driven by Wiener processes, Stochastic Processes Appl., 92, 237-263 (2001) · Zbl 1047.60062
[6] Carmona, P.; Coutin, L.; Montseny, G., Stochastic integration with respect to fractional Brownian motion, Ann. Inst. H. Poincaré-PR, 39, 27-68 (2003) · Zbl 1016.60043
[7] Chueshov, I. D.; Vuillermot, P.-A., Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Stratonovitch’s case, Probab. Theory Related Fields, 112, 149-202 (1998) · Zbl 0914.35021
[8] Chueshov, I. D.; Vuillermot, P.-A., Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Itô’s case, Stochastic Anal. Appl., 18, 581-615 (2000) · Zbl 0968.60058
[9] Chueshov, I. D.; Vuillermot, P.-A., Non random invariant sets for some systems of parabolic stochastic partial differential equations, Stochastic Anal. Appl., 22, 1421-1486 (2004) · Zbl 1065.60076
[10] Comte, F.; Renault, E., Long memory in continuous time volatility models, Math. Finance, 8, 291-323 (1998) · Zbl 1020.91021
[11] Coutin, L.; Qian, Z., Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Related Fields, 122, 108-140 (2002) · Zbl 1047.60029
[12] N. Cutland, P. Kopp, W. Willinger, Stock Price Returns and the Joseph effect: a Fractional Version of the Black-Shole Model, in: Seminar on Stochastic Analysis, Random Fields and Applications, Progress in Probability, vol. 36, Birkhäuser, Basel, 1995, pp. 327-351.; N. Cutland, P. Kopp, W. Willinger, Stock Price Returns and the Joseph effect: a Fractional Version of the Black-Shole Model, in: Seminar on Stochastic Analysis, Random Fields and Applications, Progress in Probability, vol. 36, Birkhäuser, Basel, 1995, pp. 327-351. · Zbl 0827.60021
[13] Dai, W.; Heyde, C. C., Itô’s formula with respect to fractional Brownian motion and its application, J. Appl. Math. Stochastic Anal., 9, 439-448 (1996) · Zbl 0867.60029
[14] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia in Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992.; G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia in Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992. · Zbl 0761.60052
[15] Decreusefond, L., Stochastic integration with respect to Gaussian processes, C. R. Acad. Sci. Paris, Ser. I, 334, 903-908 (2002) · Zbl 1074.60066
[16] Decreusefond, L.; Üstünel, A. S., Stochastic analysis of the fractional Brownian motion, Potential Anal., 10, 177-214 (1999) · Zbl 0924.60034
[17] Duncan, T. E.; Hu, Y.; Pasik-Duncan, B., Stochastic calculus for fractional Brownian motion I. Theory, SIAM J. Control Optim., 38, 582-612 (2000) · Zbl 0947.60061
[18] Duncan, T. E.; Maslowski, B.; Pasik-Duncan, B., Fractional Brownian motion and stochastic equations in Hilbert spaces, Stochastics Dyn., 2, 225-250 (2002) · Zbl 1040.60054
[19] Ekeland, I.; Temam, R., Analyse Convexe et Problèmes Variationnels (1974), Dunod: Dunod Paris · Zbl 0281.49001
[20] L.C. Evans, Partial differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998.; L.C. Evans, Partial differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. · Zbl 0902.35002
[21] Feyel, D.; Pradelle, A. de la, On fractional Brownian processes, Potential Anal., 10, 273-288 (1999) · Zbl 0944.60045
[22] Grecksch, W.; Anh, V. V., A parabolic stochastic differential equation with fractional Brownian motion input, Statist. Probab. Lett., 41, 337-346 (1999) · Zbl 0937.60064
[23] Gubinelli, M., Lejay, A., Tindel, S., Young integrals and SPDE’s, IECN-Preprint, 33, 2004.; Gubinelli, M., Lejay, A., Tindel, S., Young integrals and SPDE’s, IECN-Preprint, 33, 2004.
[24] Hardy, G. H.; Littlewood, J. E.; Pólya, G., Inequalities (1988), Cambridge University Press: Cambridge University Press New York · Zbl 0634.26008
[25] Hu, Y., Heat equations with fractional white noise potentials, Appl. Math. Optim., 43, 221-243 (2001) · Zbl 0993.60065
[26] Hu, Y., Probability structure preserving and absolute continuity, Ann. I. H. Poincaré-PR, 38, 557-580 (2002) · Zbl 1002.60046
[27] Kirillov, A. A.; Gvishiani, A. D., Theorems and Problems in Functional Analysis, (Problem Books in Mathematics, vol. 9 (1982), Springer: Springer New York) · Zbl 0486.46002
[28] Kleptsyna, M. L.; Kloeden, P. E.; Anh, V. V., Existence and uniqueness theorems for fBm stochastic differential equations, Problems Inform. Transmission, 34, 332-341 (1999) · Zbl 0924.60042
[29] Klingenhöfer, F.; Zähle, M., Ordinary differential equations with fractal noise, Proc. Amer. Math. Soc., 127, 1021-1028 (1999) · Zbl 0915.34054
[30] Krylov, N. V.; Rozovskii, B. L., Stochastic evolution equations, J. Sov. Math., 16, 1233-1277 (1981) · Zbl 0462.60060
[31] Kubilius, K., The existence and uniqueness of the solution of the integral equation driven by fractional Brownian motion, Lith. Math. J., 40, 104-110 (2000) · Zbl 1013.60045
[32] Lin, S. J., Stochastic analysis of fractional Brownian motions, Stochastics Stochastics Rep., 55, 121-140 (1995) · Zbl 0886.60076
[33] J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Études Mathématiques Dunod Gauthier-Villars, Paris, 1969.; J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Études Mathématiques Dunod Gauthier-Villars, Paris, 1969.
[34] J.L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 181, Springer, New York, 1972.; J.L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 181, Springer, New York, 1972.
[35] Lyons, T., Differential equations driven by rough signals, Rev. Mat. Iberoam., 14, 215-310 (1998) · Zbl 0923.34056
[36] B.B. Mandelbrot, Fractals and Scaling in Finance. Discontinuity, Concentration, Risk, Selecta Volume E, Springer, New York, 1997.; B.B. Mandelbrot, Fractals and Scaling in Finance. Discontinuity, Concentration, Risk, Selecta Volume E, Springer, New York, 1997. · Zbl 1005.91001
[37] Mandelbrot, B. B.; Van Ness, J. W., Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10, 422-437 (1968) · Zbl 0179.47801
[38] Maslowski, B.; Nualart, D., Evolution equations driven by a fractional Brownian motion, J. Funct. Anal., 202, 277-305 (2003) · Zbl 1027.60060
[39] Mikhaı¨lov, V., Équations aux Dérivées Partielles (1980), Mir: Mir Moscow
[40] Nualart, D.; Răşcanu, A., Differential equations driven by fractional Brownian motion, Collect. Math., 53, 55-81 (2002) · Zbl 1018.60057
[41] Nualart, D.; Vuillermot, P.-A., Variational solutions for a class of fractional stochastic partial differential equations, C. R. Acad. Sci. Paris, Ser. I, 340, 281-286 (2005) · Zbl 1063.60091
[42] D. Nualart, P.-A. Vuillermot, A stabilization phenomenon for a class of stochastic partial differential equations, in: Proceedings of the Conference on Stochastic Partial Differential Equations and Applications VII, Series in Pure and Applied Mathematics, Dekker, New York, 2005, in press.; D. Nualart, P.-A. Vuillermot, A stabilization phenomenon for a class of stochastic partial differential equations, in: Proceedings of the Conference on Stochastic Partial Differential Equations and Applications VII, Series in Pure and Applied Mathematics, Dekker, New York, 2005, in press. · Zbl 1063.60091
[43] E. Pardoux, Équations aux Dérivées Partielles Stochastiques Non-Linéaires Monotones: Étude de Solutions Fortes de Type Itô, Thèse, vol. 1556, Université Paris-Orsay, Paris, 1975.; E. Pardoux, Équations aux Dérivées Partielles Stochastiques Non-Linéaires Monotones: Étude de Solutions Fortes de Type Itô, Thèse, vol. 1556, Université Paris-Orsay, Paris, 1975.
[44] Pipiras, V.; Taqqu, M. S., Integration questions related to fractional Brownian motion, Probab. Theory Related Fields, 118, 251-291 (2000) · Zbl 0970.60058
[45] Pipiras, V.; Taqqu, M. S., Are classes of deterministic integrands for fractional Brownian motion on an interval complete?, Bernoulli, 7, 873-897 (2001) · Zbl 1003.60055
[46] Roger, L. C.G., Arbitrage with fractional Brownian motion, Math. Finance, 7, 95-105 (1997) · Zbl 0884.90045
[47] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives. Theory and Applications (1993), Gordon and Breach: Gordon and Breach New York · Zbl 0818.26003
[48] Sanz-Solé, M.; Vuillermot, P.-A., Equivalence and Hölder-Sobolev regularity of solutions for a class of non autonomous stochastic partial differential equations, Ann. I.H. Poincaré, 39, 703-742 (2003) · Zbl 1026.60080
[49] Stein, E., Singular Integrals and Differentiability Properties of Functions (1970), Princeton University Press: Princeton University Press Princeton · Zbl 0207.13501
[50] Williams, D. R.E., Path-wise solutions of stochastic differential equations driven by Lévy processes, Rev. Mat. Iberoam., 17, 295-329 (2001) · Zbl 1002.60060
[51] Young, L. C., An inequality of the Hölder type connected with Stieltjes integration, Acta Math., 67, 251-282 (1936) · Zbl 0016.10404
[52] Zähle, M., Integration with respect to fractal functions and stochastic calculus. I, Probab. Theory Related Fields, 111, 333-374 (1998) · Zbl 0918.60037
[53] Zähle, M., Integration with respect to fractal functions and stochastic calculus. II, Math. Nachr., 225, 145-183 (2001) · Zbl 0983.60054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.