×

Quasi-neutral fluid models for current-carrying plasmas. (English) Zbl 1087.82022

Summary: We propose three formulations of a model describing a quasi-neutral plasma with non-vanishing current. These formulations are obtained by exploring the quasi-neutral limit of a two-fluid isentropic Euler system coupled with the Poisson equation. In order to study and compare the numerical efficiency of each formulation, two test-problems are implemented in one dimension. The first one is a periodic perturbation of a uniform stationary plasma. The second one is a case of plasma expansion in vacuum between two electrodes.

MSC:

82D10 Statistical mechanics of plasmas
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ben Abdallah, N.; Mas-Gallic, S.; Raviart, P. A., Analysis and asymptotics of a one-dimensional ion extraction model, Asymptotic Anal., 10, 1-28 (1995) · Zbl 0829.76096
[2] Berezin, Yu. A.; Khudick, V. N.; Pekker, M. S., Conservative finite difference schemes for the Fokker-Planck equation not violating the law of an increasing entropy, J. Comput. Phys., 69, 163-174 (1987) · Zbl 0644.76091
[3] Braginskii, S. I., Transport processes in a plasma, (Leontovitch, M. A., Reviews of Plasma Physics, vol. 1 (1965)) · Zbl 0091.22904
[4] Buet, C.; Cordier, S.; Degond, P.; Lemou, M., Fast algorithms for numerical, conservative and entropy approximations of the Fokker-Planck-Landau equation, J. Comput. Phys., 133, 310-322 (1997) · Zbl 0880.65112
[5] Chen, F. F., Introduction to Plasma Physics and Controlled Fusion, vol. 1 (1974), Plenum Press: Plenum Press New York
[6] Cho, M.; Hastings, D. E., Dielectric charging process and arcing rates of high voltage solar arrays, J. Spacecraft Rockets, 28, 698-706 (1990)
[7] Cordier, S.; Grenier, E., Quasineutral limit of Euler-Poisson system arising from plasma physics, Commun. Partial Differential Equations, 25, 5-6, 1099-1113 (2000) · Zbl 0978.82086
[8] Crispel, P.; Degond, P.; Parzani, C.; Vignal, M.-H., Trois formulations d’un modèle de plasma quasi-neutre avec courant non-nul, C. R. Acad. Sci. Paris, 338, 327-332 (2004) · Zbl 1035.76061
[9] P. Crispel, P. Degond, M.-H.Vignal, Thermal effects in plasma expansion problems, in preparation; P. Crispel, P. Degond, M.-H.Vignal, Thermal effects in plasma expansion problems, in preparation · Zbl 1143.82027
[10] Crouseilles, N.; Filbet, F., Numerical approximation of collisional plasmas by high order methods, J. Comput. Phys., 201, 546-572 (2004) · Zbl 1076.76053
[11] Degond, P., The Child-Langmuir law in the kinetic theory of charged-particles. Part 1, Electron flows in vacuum, (Perthame, B., Advances in Kinetic Theory (1994), World Scientific: World Scientific Singapore), 3-44 · Zbl 0863.76091
[12] Degond, P.; Jaffard, S.; Poupaud, F.; Raviart, P. A., The Child-Langmuir asymptotic of the Vlasov-Poisson equation for cylindrically or spherically symmetric diodes, Math. Methods Appl. Sci, 19, 287-340 (1996) · Zbl 0844.35087
[13] Degond, P.; Parzani, C.; Vignal, M. H., Un modèle d’expansion de plasma dans le vide, C. R. Acad. Sci. Paris, 335, 4, 399-404 (2002) · Zbl 1140.76499
[14] Degond, P.; Parzani, C.; Vignal, M.-H., A one-dimensional model of plasma expansion, Math. Comput. Modelling, 38, 1093-1099 (2003) · Zbl 1047.76127
[15] Degond, P.; Parzani, C.; Vignal, M. H., Plasma expansion in vacuum: modeling the breakdown of quasineutrality, SIAM Multiscale Modeling Simul., 2, 158-178 (2003) · Zbl 1068.82021
[16] Degond, P.; Parzani, C.; Vignal, M.-H., On plasma expansion in vacuum, (Colli, P.; Verdi, C.; Visintin, A., Free Boundary Problems: Theory and Applications. Free Boundary Problems: Theory and Applications, International Series of Numerical Mathematics, vol. 147 (2004), Birkhäuser: Birkhäuser Basel), 103-112 · Zbl 1045.35053
[17] Degond, P.; Peyrard, P. F.; Russo, G.; Villedieu, Ph., Polynomial upwind schemes for hyperbolic systems, C. R. Acad. Sci. Paris, 328, 479-483 (1999) · Zbl 0933.65101
[18] Degond, P.; Raviart, P. A., An asymptotic analysis of the one-dimensional Vlasov Poisson system: the Child-Langmuir law, Asymptotic Anal., 4, 187-214 (1991) · Zbl 0840.35082
[19] P. Degond, R. Talaalout, M.H. Vignal, Electron transport and secondary emission in a surface of a solar cell, comptes-rendus de la confèrence multipactor, RF and DC corona and passive intermodulation in space RF hardware, ESTEC, Noordwijk, The Netherlands, September 4-6, 2000; P. Degond, R. Talaalout, M.H. Vignal, Electron transport and secondary emission in a surface of a solar cell, comptes-rendus de la confèrence multipactor, RF and DC corona and passive intermodulation in space RF hardware, ESTEC, Noordwijk, The Netherlands, September 4-6, 2000
[20] Epperlein, E. M., Implicit and conservative difference schemes for the Fokker-Planck equation, J. Comput. Phys., 112, 291-297 (1994) · Zbl 0806.76050
[21] Filbet, F.; Pareschi, L., Numerical method for the accurate solution of the Fokker-Planck-Landau equation in the non homogeneous case, J. Comput. Phys., 179, 1-26 (2002) · Zbl 1003.82011
[22] Franklin, R. N.; Ockendon, J. R., Asymptotic matching of plasma and sheath in an active low pressure discharge, J. Plasma Phys., 4, 3521-3528 (1970)
[23] Godlewski, E.; Raviart, P. A., Numerical Approximation of Hyperbolic Systems of Conservation Laws (1996), Springer: Springer Berlin · Zbl 0860.65075
[24] Ha, S. Y.; Slemrod, M., Global existence of plasma ion sheaths and their dynamics, Commun. Math. Phys., 238, 143-186 (2004) · Zbl 1055.35085
[25] Hastings, D. E.; Cho, M.; Kuninaka, H., Arcing rates for high voltage solar arrays: theory, experiments and predictions, J. Spacecraft Rockets, 29, 538-554 (1992)
[26] Hastings, D. E.; Weyl, G.; Kaufman, D., Threshold voltage for arcing on negatively biased solar arrays, J. Spacecraft Rockets, 27, 539-544 (1990)
[27] I. Katz, D.B. Snyder, Mechanism for spacecraft charging initiated destruction of solar arrays in GEO, AIAA 98-1002, 36th Aerospace Sciences Meeting and Exhibit, Reno, NV; I. Katz, D.B. Snyder, Mechanism for spacecraft charging initiated destruction of solar arrays in GEO, AIAA 98-1002, 36th Aerospace Sciences Meeting and Exhibit, Reno, NV
[28] I. Katz, D.B. Snyder, E.A. Robertson, ESD triggered solar array failure mechanism, 6th spacecraft charging technology conference, AFRL-VS-TR-20001578, September 2000; I. Katz, D.B. Snyder, E.A. Robertson, ESD triggered solar array failure mechanism, 6th spacecraft charging technology conference, AFRL-VS-TR-20001578, September 2000
[29] Kovalev, V. F.; Bychenkov, V. Yu., Analytic solutions to the Vlasov equations for expanding plasmas, Phys. Rev. Lett., 90, 185004 (2003)
[30] Krasik, Ya. E.; Dunaevsky, A.; Krokhmal, A.; Felsteiner, J., Emission properties of different cathodes at \(E<10^5 V\)/cm, J. Appl. Phys., 89, 2379-2399 (2001)
[31] Langmuir, I.; Compton, K. T., Electrical discharges in gases, part II, fundamental phenomena in electrical discharges, Rev. Modern Phys., 3, 191-257 (1931)
[32] Lascaux, P.; Théodor, R., Analyse numérique matricielle appliquée à l’art de l’ingénieur (1993), Masson · Zbl 0989.65500
[33] Mesyats, G. A., Explosive Electron Emission (1998), URO Press: URO Press Ekaterinburg
[34] Miller, R. B., Mechanism of explosive electron emission for dielectric fiber (velvet) cathodes, J. Appl. Phys., 84, 3880-3889 (1998)
[35] Nanbu, K.; Yonemura, S., Weighted particles in Coulomb collision simulations based on the theory of a cumulative scattering angle, J. Comput. Phys., 145, 639-654 (1998) · Zbl 0929.76103
[36] Pareschi, L.; Russo, G.; Toscani, G., Fast spectral methods for Fokker-Planck-Landau collision operator, J. Comput. Phys., 165, 216-236 (2000) · Zbl 1052.82545
[37] Parker, S. E.; Procassini, R. J.; Birdsall, C. K., A suitable boundary condition for bounded plasma simulation without sheath resolution, J. Comput. Phys., 104, 41-49 (1993) · Zbl 0800.76374
[38] Parks, D. E.; Jongeward, G. A.; Katz, I.; Davis, V. A., Threshold determining mechanisms for discharges in high voltage solar arrays, J. Spacecraft Rockets, 24, 367-371 (1987)
[39] D. Payan, A model of inverted voltage gradient discharge inducing a secondary arc between cells on a solar array, in: CNES, European Round Table on modelling of S/C-plasma Interactions, 24-25 February 2000, ESA-ESTEC; D. Payan, A model of inverted voltage gradient discharge inducing a secondary arc between cells on a solar array, in: CNES, European Round Table on modelling of S/C-plasma Interactions, 24-25 February 2000, ESA-ESTEC
[40] Pekker, M. S.; Khudik, V. N., Conservative difference schemes for the Fokker-Planck equation, U.S.S.R. Comput. Math. Math. Phys., 24, 206-210 (1984)
[41] Potapenko, I. F.; de Arzevedo, C. A., The completely conservative difference schemes for the nonlinear Landau-Fokker-Planck equation, J. Comput. Appl. Math., 103, 115-123 (1999) · Zbl 0944.65152
[42] Riemann, K. U., The Bohm criterion and sheath formation, J. Phys. D, 24, 493-518 (1991)
[43] Riemann, K. U.; Daube, Th., Analytical model of the relaxation of a collisionless ion matrix sheath, J. Appl. Phys., 86, 1201-1207 (1999)
[44] Rozhansky, V. A.; Tsendin, L. D., Transport Phenomena in Partially Ionized Plasma (2001), Taylor & Francis: Taylor & Francis London
[45] Shiffer, D.; Ruebush, M.; Zagar, D.; LaCour, M.; Golby, K.; Haworth, M.; Umstattd, R., Cathode and anode plasma in short-pulse explosive field-emission cathodes, J. Appl. Phys., 91, 5599-5603 (2002)
[46] Slemrod, M., Shadowing and the plasma-sheath transition layer, J. Nonlinear Sci., 11, 193-209 (2001) · Zbl 1001.76125
[47] Slemrod, M., Monotone increasing solutions of the Painleve 1 equation \(y\)″=\(y^2+x\) and their role in the stability of the plasma-sheath transition, Eur. J. Appl. Math., 13, 6, 663-680 (2002) · Zbl 1027.34044
[48] M. Slemrod, The radio frequency driven plasma sheath: asymptotics and analysis, SIAM J. Appl. Math., submitted; M. Slemrod, The radio frequency driven plasma sheath: asymptotics and analysis, SIAM J. Appl. Math., submitted · Zbl 1037.76072
[49] Slemrod, M.; Sternberg, N., Quasi-neutral limit for Euler-Poisson system, J. Nonlinear Sci., 11, 193-209 (2001) · Zbl 0997.34033
[50] D.B. Snyder, D.C. Ferguson, B.V. Vayner, J.T. Galofaro, New spacecraft-charging solar array failure mechanism, in: 6th Spacecraft Charging Technology Conference, AFRL-VS-TR-20001578, September, 2000; D.B. Snyder, D.C. Ferguson, B.V. Vayner, J.T. Galofaro, New spacecraft-charging solar array failure mechanism, in: 6th Spacecraft Charging Technology Conference, AFRL-VS-TR-20001578, September, 2000
[51] Soldi, J. D.; Hastings, D. E.; Hardy, D.; Guidice, D.; Ray, K., Flight data analysis for the photovoltaic array space power plus diagnostics experiment, J. Spacecraft Rockets, 34, 92-103 (1997)
[52] Spitzer, L.; Härm, R., Transport phenomena in a completely ionized gas, Phys. Rev., 89, 977-981 (1953) · Zbl 0050.23505
[53] Sternberg, N.; Godyak, V. A., Solving the mathematical model of the electrode sheath in symmetrically driven rf discharges, J. Comput. Phys., 111, 347-353 (1994) · Zbl 0796.76096
[54] Sze, H.; Benford, J.; Woo, W.; Harteneck, B., Dynamics of a virtual cathode oscillator driven by a pinched diode, Phys. Fluids, 29, 3873-3880 (1986)
[55] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (1999), Springer: Springer Berlin · Zbl 0923.76004
[56] Vaughn, J. A.; Carruth, M. R.; Katz, I.; Mandell, M. J.; Jongeward, G. A., Electrical breakdown currents on large spacecrafts in low earth orbit, J. Spacecraft Rockets, 31, 31-54 (1994)
[57] Yatsuzuka, M.; Young, D., Plasma effects on electron beam focusin and microwave emission in a virtual cathode oscillator, IEEE Trans. Plasma Sci., 26 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.