Language:   Search:   Contact
Zentralblatt MATH has released its new interface!
For an improved author identification, see the new author database of ZBMATH.

Query:
Fill in the form and click »Search«...
Format:
Display: entries per page entries
Zbl 1085.34015
Ma, Ruyun
Nodal solutions for a fourth-order two-point boundary value problem.
(English)
[J] J. Math. Anal. Appl. 314, No. 1, 254-265 (2006). ISSN 0022-247X

Summary: We consider boundary value problems of fourth-order differential equations of the form $$u''''+\beta u''-\alpha u=\mu h(x) f(u),\qquad 0< x< r,$$ $$u(0)= u(r)= u''(0)= u''(r)= 0,$$ where $\mu$ is a parameter, $\beta\in(-\infty, \infty)$, $\alpha\in [0,\infty)$ are constants with $${r^2\beta\over\pi^2}+ {r^4\alpha\over\pi^4}< 1,$$ $h\in C(0, r], [0,\infty))$ with $h\not\equiv 0$ on any subinterval of $[0, r]$, $f\in C(\bbfR, \bbfR)$ satisfies $f(u)u> 0$ for all $u\ne 0$, and $$\lim_{u\to-\infty} {f(u)\over u}= 0,\quad \lim_{u\to+\infty} {f(u)\over u}= f_{+\infty},\quad \lim_{u\to 0} {f(u)\over u}= f_0,$$ for some $f_{+\infty}$, $f_0\in (0,\infty)$. We use bifurcation techniques to establish existence and multiplicity results on nodal solutions to the problem.
MSC 2000:
*34B15 Nonlinear boundary value problems of ODE
34C23 Bifurcation (periodic solutions)

Keywords: multiplicity results; eigenvalues; bifurcation methods; nodal zeros

Cited in: Zbl 1144.34008

Highlights
Master Server