×

On localization in the continuous Anderson-Bernoulli model in higher dimension. (English) Zbl 1084.82005

From the introduction: Consider the random Schrödinger operator on \(\mathbb R^{d}\), \(H_{\varepsilon}=-\Delta +V=H^{o}+V\) with the potential \(V=V_{\varepsilon}(x)=\sum _{j\in Z^{d}} \varepsilon_{j}\varphi (x-j).\) Here \(\varepsilon_{j}\in \{ 0,1\}\) are independent and \(\varphi\) is a smooth compactly supported function satisfying \(0\leq \varphi \leq 1\) and \(\text{ supp}\;\varphi \subset B(0,1/10)\). Clearly \(\inf \text{ Spec}\; H_{\varepsilon}=0\) a.s.
Our main result is the following
Theorem. At energies near the bottom of the spectrum \((E>0, E\approx 0)\), \(H_{\varepsilon}\) displays spectral localization a.s. in \(\varepsilon\). By spectral localization we mean point spectrum with exponentially decaying eigenfunctions.

MSC:

82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
47B80 Random linear operators
47N55 Applications of operator theory in statistical physics (MSC2000)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bollobas, B.: Combinatorics. Cambridge UP 1986
[2] Bourgain, J.: On localization for lattice Schrödinger operators involving Bernoulli variables. Lect. Notes Math., vol. 1850, pp. 77–100. Springer 2004 · Zbl 1083.35073
[3] Carmona, R., Klein, A., Martinelli, F.: Anderson localization for Bernoulli and other singular potentials. Comm. Math. Phys. 108, 41–66 (1987) · Zbl 0615.60098 · doi:10.1007/BF01210702
[4] Combes, J.M., Hislop, P.D.: Localization for some continuous, random Hamiltonians in d-dimensions. J. Funct. Anal. 124, 149–180 (1994) · Zbl 0801.60054 · doi:10.1006/jfan.1994.1103
[5] von Dreifus, H., Klein, A.: A new proof of localization in the Anderson tight binding model. Comm. Math. Phys. 124, 285–299 (1989) · Zbl 0698.60051 · doi:10.1007/BF01219198
[6] Damanik, D., Sims, R., Stolz, G.: Localization for one dimensional, continuum, Bernoulli-Anderson Models. Duke Math. J. 114, 59–100 (2002) · Zbl 1107.82025 · doi:10.1215/S0012-7094-02-11414-8
[7] Escauriaza, L., Vessella, S.: Optimal three-cylinder inequalities for solutions to parabolic equations with Lipschitz leading coefficients. Comtemp. Math. 333, 79–87 (2003) · Zbl 1056.35150
[8] Figotin, A., Klein, A.: Localization of classical waves I: Acoustic waves. Comm. Math. Phys. 180, 439–482 (1996) · Zbl 0878.35109 · doi:10.1007/BF02099721
[9] Germinet, F., Klein, A.: Bootstrap Multiscale Analysis and Localization in Random Media. Comm. Math. Phys. 222, 415–448 (2001) · Zbl 0982.82030 · doi:10.1007/s002200100518
[10] Hörmander, L.: Uniqueness theorems for second order elliptic differential equations. Comm. Partial Differential Equations 8, 21–64 (1983) · Zbl 0546.35023 · doi:10.1080/03605308308820262
[11] Klein, A.: Multiscale Analysis and Localization. Lectures given at Random Schrödinger operators: methods, results, and perspectives. To appear in États de la recherche, Université Paris 13, June 2002
[12] Klopp, F.: Localization for some continuous random Schrödinger operators. Comm. Math. Phys. 167, 553–569 (1995) · Zbl 0820.60044 · doi:10.1007/BF02101535
[13] Klopp, F.: Localisation pour des opérateurs de Schrödinger aléatoires dans L2(Rd); un modèle semi-classique. Ann. Inst. Fourier 45, 265–316 (1995) · Zbl 0817.35088
[14] Meshkov, V.: On the possible role of decay at infinity of solutions of second order partial differential equations. Math. USSR Sbornik 72, 343–351 (1992) · Zbl 0782.35010 · doi:10.1070/SM1992v072n02ABEH001414
[15] del Rio, R., Jitomirskaya, S., Last, Y., Simon, B.: Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization. J. Anal. Math. 69, 153–200 (1996) · Zbl 0908.47002
[16] Shubin, C., Vakilian, T., Wolff, T.: Some harmonic Analysis questions suggested by Anderson/Bernoulli models. Geom. Funct. Anal. 8, 932–964 (1988) · Zbl 0920.42005 · doi:10.1007/s000390050078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.