×

Itô’s- and Tanaka’s-type formulae for the stochastic heat equation: The linear case. (English) Zbl 1084.60039

The authors study the stochastic heat equation with additive noise in dimension one, that is, \(dX_t = \Delta X_t dt + dW_t,\) \(t \in (0,T], X_0=0\), where \(W\) denotes a cylindrical Brownian motion. They understand the solution of such equation in a mild sense and can be solved explicitly in the form of a stochastic convolution. Using the representation of the solution given by the convolution of \(W\) by the operator-valued kernel \(e^{(t-s)\Delta}\), the authors obtain Itô’s and Tanaka’s type formulae associated to \(X\). In order to obtain these results, they adapt the methodology used to study some properties of fractional Brownian motion to their infinite-dimensional case.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H05 Stochastic integrals
60H07 Stochastic calculus of variations and the Malliavin calculus
60G15 Gaussian processes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alòs, E.; Mazet, O.; Nualart, D., Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than \(\frac{1}{2} \), Stochastic Proc. Appl., 86, 121-139 (2000) · Zbl 1028.60047
[2] Alòs, E.; Mazet, O.; Nualart, D., Stochastic calculus with respect to Gaussian processes, Ann. Probab., 29, 766-801 (2001) · Zbl 1015.60047
[3] van den Berg, M., Gaussian bounds for the Dirichlet heat kernel, J. Funct. Anal., 88, 267-278 (1990) · Zbl 0705.35052
[4] R. Carmona, B. Rozovskii (Eds.), Stochastic Partial Differential Equations: Six Perspectives, American Mathematical Society, Providence, RI, 1999, xi+334p.; R. Carmona, B. Rozovskii (Eds.), Stochastic Partial Differential Equations: Six Perspectives, American Mathematical Society, Providence, RI, 1999, xi+334p. · Zbl 0904.00017
[5] S. Cerrai, Second Order PDE’s in Finite and Infinite Dimension: A Probabilistic Approach, Lecture Notes in Mathematics, vol. 1762, 2001, 330p.; S. Cerrai, Second Order PDE’s in Finite and Infinite Dimension: A Probabilistic Approach, Lecture Notes in Mathematics, vol. 1762, 2001, 330p. · Zbl 0983.60004
[6] P. Cheridito, D. Nualart, Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter \(H\); P. Cheridito, D. Nualart, Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter \(H\) · Zbl 1083.60027
[7] Coutin, L.; Nualart, D.; Tudor, C., Tanaka formula for the fractional Brownian motion, Stochastic Proc. Appl., 94, 301-315 (2001) · Zbl 1053.60055
[8] Dalang, R., Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s, Electron. J. Probab., 4, 6, 29 (1999) · Zbl 0922.60056
[9] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992, xviii+454p.; G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992, xviii+454p. · Zbl 0761.60052
[10] G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996, xiii+339p.; G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996, xiii+339p. · Zbl 0849.60052
[11] J. Guerra, D. Nualart, The \(1 / HH > 1 / 2\); J. Guerra, D. Nualart, The \(1 / HH > 1 / 2\) · Zbl 1075.60056
[12] Y. Hu, D. Nualart, Some processes associated with fractional Bessel processes, preprint, Barcelona, 2004.; Y. Hu, D. Nualart, Some processes associated with fractional Bessel processes, preprint, Barcelona, 2004. · Zbl 1074.60050
[13] León, J.; Nualart, D., Stochastic evolution equations with random generators, Ann. Probab., 26, 1, 149-186 (1998) · Zbl 0939.60066
[14] P. Malliavin, Stochastic Analysis, Springer, Berlin, 1997, 343p.; P. Malliavin, Stochastic Analysis, Springer, Berlin, 1997, 343p. · Zbl 0878.60001
[15] D. Nualart, The Malliavin Calculus and Related Topics, Springer, Berlin, 1995, 266p.; D. Nualart, The Malliavin Calculus and Related Topics, Springer, Berlin, 1995, 266p. · Zbl 0837.60050
[16] Nualart, D.; Vives, J., Smoothness of Brownian local times and related functionals, Potential Anal., 1, 3, 257-263 (1992) · Zbl 0776.60092
[17] Stroock, D., Homogeneous chaos revisited, séminaire de probabilités XXI, Lect. Notes Math., 1247, 1-7 (1987)
[18] Tudor, C.; Viens, F., Itô formula and local time for the fractional Brownian sheet, Electron. J. Probab., 8, 14, 31 (2003) · Zbl 1067.60030
[19] J. Walsh, An introduction to stochastic partial differential equations, in: P.L. Hennequin (Ed.), École d’Été de Probabilités de Saint-Flour XIV-1984, Lecture Notes in Mathematics, vol. 1180, 1986 pp. 265-439.; J. Walsh, An introduction to stochastic partial differential equations, in: P.L. Hennequin (Ed.), École d’Été de Probabilités de Saint-Flour XIV-1984, Lecture Notes in Mathematics, vol. 1180, 1986 pp. 265-439.
[20] Zambotti, L., A reflected stochastic heat equation as symmetric dynamics with respect to the 3-d Bessel bridge, J. Funct. Anal., 180, 1, 195-209 (2001) · Zbl 1002.60059
[21] L. Zambotti, Itô-Tanaka formula for SPDEs driven by additive space-time white noise, preprint, 2004.; L. Zambotti, Itô-Tanaka formula for SPDEs driven by additive space-time white noise, preprint, 2004.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.