×

A trust region method for solving the decentralized static output feedback design problem. (English) Zbl 1083.49024

Summary: The decentralized static output feedback design problem is considered. A constrained trust region method is developed that solves this optimal control problem when a complete set of state variables is not available. The considered problem is interpreted as a nonlinear (non-convex) constrained matrix optimization problem. Then, a decentralized constrained trust region method is developed for this problem class which exploits the diagonal structure of the problem and uses inexact computations. Finally, numerical results are given for the proposed method.

MSC:

49N10 Linear-quadratic optimal control problems
49N35 Optimal feedback synthesis
93B52 Feedback control
65K05 Numerical mathematical programming methods
90C30 Nonlinear programming

Software:

TRICE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, B. D.O.; Moore, J. B., Linear optimal control (1971), Englewood Cliffs, N. J.: Prentice-Hall, Englewood Cliffs, N. J. · Zbl 0321.49001
[2] Anderson, B. D.O.; Moore, J. B., Time-varing feedback laws for decentralized control, IEEE Trans. Automatic Control, 26, 1133-1138 (1981) · Zbl 0473.93007 · doi:10.1109/TAC.1981.1102770
[3] Argyros, I. K., On the applicability of two Newton, methods for solving equations in Banach space, J. Appl. Math. & Computing, 6, 267-276 (1999) · Zbl 0937.65064
[4] Blondel, V.; Tsitsklis, J. N., NP-hardness of some linear control design problems, SIAM J. Control Optim., 35, 2118-2127 (1997) · Zbl 0892.93050 · doi:10.1137/S0363012994272630
[5] S. Boyd, L. El-Gaoui, E. Feron, and V. Balakrishnan,Linear matrix inequalities in system and control theory, SIAM studies in applied mathematics, Philadelphia, Vol. 15, 1994. · Zbl 0816.93004
[6] Choi, S. S.; Sirisena, H. R., Computation of optimal output feedback gains for linear multivariable systems, IEEE Trans. Autom. Control, 19, 257-258 (1974) · Zbl 0278.49039 · doi:10.1109/TAC.1974.1100534
[7] Corfmat, J. P.; Morse, A. S., Decentralized control of linear multivariable systems, Automatica, 12, 479-495 (1976) · Zbl 0347.93019 · doi:10.1016/0005-1098(76)90008-X
[8] Davison, E. J.; Chang, T. N., Decentralized stabilization and pole assignment for general proper systems, IEEE Trans. Autom. Control, 35, 652-664 (1990) · Zbl 0800.93448 · doi:10.1109/9.53544
[9] Dembo, R. S.; Steihang, T., Truncated-Newton algorithms for Large-Scale unconstrained Optimization, Math. Programming, 26, 190-212 (1983) · Zbl 0523.90078 · doi:10.1007/BF02592055
[10] Dennis, J. E.; Heinkenschloss, M.; Vicente, L. N., Trust-region interior-point SQP algorithm for a class of nonlinear programming problems, SIAM J. Control Optim., 36, 1750-1794 (1998) · Zbl 0921.90137 · doi:10.1137/S036012995279031
[11] Dennis, J. E.; El-Alem, M.; Maciel, M. C., A global convergence theory for general trust-region-based algorithms for equality constrained optimization, SIAM J. Optim., 7, 177-207 (1997) · Zbl 0867.65031 · doi:10.1137/S1052623492238881
[12] El-Alem, M., A Robust trust-region algorithm with a non-monotonic penalty parameter scheme for constrained optimization, SIAM J. Optim., 5, 348-378 (1995) · Zbl 0828.65063 · doi:10.1137/0805018
[13] Geromel, J. C.; Bernusson, J., An algorithm for optimal decentralized regulation of linear quadratic interconnected systems, Automatica, 15, 489-491 (1979) · Zbl 0407.49019 · doi:10.1016/0005-1098(79)90025-6
[14] Gong, Z.; Aldeen, M., Stabilization of decentralized control systems, Journal of Mathematical Systems, Estimation, and Control, 7, 1-16 (1997)
[15] Gundes, A. N.; Desoer, C. A., Algebraic, theory of linear feedback systems with full and decentralized compensators (1990), Berlin: Springerverlag, Berlin · Zbl 0697.93044
[16] Mahmoud, M. S.; Hassan, M. F.; Saleh, S. J., Decentralized structures for a stream water quality control problems, Optimal Control Applications & Methods, 6, 167-168 (1985) · Zbl 0566.93003 · doi:10.1002/oca.4660060209
[17] Horisberger, H. P.; Belanger, P. R., Regulators for linear time, time invariant plants with uncertain parameters, IEEE Transactions on Automatic Control, 12, 705-708 (1976) · Zbl 0339.93013 · doi:10.1109/TAC.1976.1101350
[18] Khargonekar, P. P.; Ozguler, A. B., Decentralized control and periodec feedback, IEEE Trans. Autom. Control, 39, 877-882 (1994) · Zbl 0807.93052 · doi:10.1109/9.286275
[19] Kupfer, F. S., Reduced SQP in Hilbert space with applications to optimal control (1992), Germany: FB IV-Mathematik, Universität Trier, Germany
[20] Leibfritz, F., A LMI-based algorithm for designing suboptimal static \({\mathcal{H}}_2 /{\mathcal{H}}_\infty\) output feedback controllers, SIAM Journal on Control and Optimization, 39, 1711-1735 (2001) · Zbl 0997.93032 · doi:10.1137/S0363012999349553
[21] Leibfritz, F.; Mostafa, E. M.E., Trust region methods for solving the optimal output feedback design problem, Int. J. on Control., 76, 501-519 (2003) · Zbl 1040.93023 · doi:10.1080/0020717031000087653
[22] Leibfritz, F.; Mostafa, E. M.E., An interior-point trast region method for a special class, of nonlinear SDP-problems, SIAM J. Optim., 12, 1048-1074 (2002) · Zbl 1035.90102 · doi:10.1137/S1052623400375865
[23] F. Leibfritz,COMPl_eib: Constraint Matrix-optimization Problem library—a collection of test examples for nonlinear semi-definite programs, control, system design and related problems. Tech. Report-03.http://www.uni-trier.de/leibfr/COMPleib
[24] Levine, W. S.; Athans, M., On the determination of the optimal constant output feedback gains for linear multivariable systems, IEEE Trans. Autom. Control, 15, 44-48 (1970) · doi:10.1109/TAC.1970.1099363
[25] Liu, W. Q.; Sreeram, V., New algorithm for computing LQ suboptimal output feedback gains of decentraliced control systems, JOTA, 93, 597-607 (1997) · Zbl 0871.49031 · doi:10.1023/A:1022647230641
[26] Mostafa, E. M.E., Efficient trust region methods in numerical optimization (2000), Egypt: Dept. of Mathematics, Faculty of Science, Alexandria University, Egypt
[27] Rautert, T.; Sachs, E. W., Computational design of optimal output feedback controllers, SIAM J. Optim., 7, 837-852 (1997) · Zbl 0887.49028 · doi:10.1137/S1052623495290441
[28] Saif, M.; Guan, Y., Decentralized state estimation in large-scale interconnected dynamical systems, Automatica, 28, 215-219 (1992) · doi:10.1016/0005-1098(92)90024-A
[29] E.D. Sonntag,Mathematical control theory, Springer Verlag, 1994.
[30] Sorensen, D. C., Newton’s method with a model trust region modification, SIAM J. Numer. Anal., 19, 409-426 (1982) · Zbl 0483.65039 · doi:10.1137/0719026
[31] Steihang, T., The conjugate gradient method and trust regions in large-scale optimization, SIAM J. Numer. Anal., 20, 626-637 (1983) · Zbl 0518.65042 · doi:10.1137/0720042
[32] Trave, L.; Tarras, A. M.; Titli, A., An application of vibrational control to cancel unstable decentralized fixed mode, IEEE Trans. Autom. Control, 30, 283-286 (1985) · Zbl 0554.93061 · doi:10.1109/TAC.1985.1103932
[33] Toivonen, H. T., A globally convergent algorithm for the optimal constant output feedback problem, Int. J. Control., 41, 1589-1599 (1985) · Zbl 0574.93023 · doi:10.1080/0020718508961217
[34] Toivonen, H. T.; Mäkilä, P. M., Newton’s method for solving parametric quadratic control problems, Int. J. Control, 46, 897-911 (1987) · Zbl 0645.49016 · doi:10.1080/00207178708547402
[35] Veilette, R. J.; Medanic, J. V.; Perkins, W. R., Design of reliable control systems, IEEE Trans. Automatic Control, 37, 290-304 (1992) · Zbl 0745.93025 · doi:10.1109/9.119629
[36] Yu, Z.; Wang, C.; Yu, J., Combining trust region and linesrarch algorithm for equality constrained optimization, J. Appl. Math. & Computing, 14, 123-136 (2004) · Zbl 1053.90122 · doi:10.1007/BF02936103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.