×

Global properties of the wave equation on non-globally hyperbolic manifolds. (English) Zbl 1078.58016

The author studies the equation \(P u=0\) or \( P u+Vu=0\) where \(P u\) is defined on \(\mathbb{R}^{4} \) by \( (1- C(r,z) / r ^{2}) \partial _{t} ^{2}u - \Delta _{x}u- 2 (C(r,z)/ r ^{2}) \partial _{t} \partial {\varphi }u\). The coordinates in \( {\mathbb{R}}^{4} \) are \(( x ^{1}, x ^{2}, x ^{3},t)\), but on \( {\mathbb{R}}^{3} \) also the cylindrical coordinates \( r = ( | x ^{1}| ^{2}+ | x ^{2} | ^{2}) ^{1/2}\), \( x ^{1} = r \cos \varphi\) , \( x ^{2}= r \sin \varphi\), \(z = x ^{3}\) are used. In particular, \( \Delta _{x}\) is the Laplace operator in \( {\mathbb{R}}^{3} \) and \( P \) corresponds to the wave operator on \( {\mathbb{R}}^{4} \), if the latter is endowed with the Lorentzian metric \(d t ^{2} - ( r ^{2} - C ^{2}( r,z)) d \varphi ^{2} - d r ^{2} - d z ^{2}\). It is assume that \( C \geq 0\) and that \(C\) vanishes if \( (r,z) \, \notin [ r _{-}, r _{+}], \times [ z _{-}, z_{+}]\), which means in particular that the metric is the Minkowski metric outside some compact set. The operator is globally hyperbolic with respect to the surfaces \(t = \) const if \( C(r,z) < r\), but the main interest of the author is precisely to study what happens when this condition does not hold.
In particular, when \( \Sigma = \{ C=r\}\) is not void, there exist closed null geodesics, and when \(T= \{C>r\}\) is non-void, then \({\mathbb{R}}^{4} \) is “totally vicious” (in the terminology of the paper) in that any two points can be connected by timelike future-pointing curves. In this kind of contexts the author studies a variety of questions: uniqueness of the Cauchy problem, resonances, asymptotically free solutions, meromorphic continuation of the scattering matrix, local energy decay. As a justification for the equation the author mentions that the metric under consideration is a particular case of the so-called Papapetrou metric which appears in the study of the Einstein equations.

MSC:

58J45 Hyperbolic equations on manifolds
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bachelot, A.; Motet-Bachelot, A., Les résonances d’un trou noir de Schwarzschild, Ann. Inst. Henri Poincaré - Physique théorique, 59, 1, 3-68 (1993) · Zbl 0793.53094
[2] Beals, M.; Reed, M., Microlocal regularity theorems for nonsmooth pseudodifferential operators and applications to nonlinear problems, Trans. Amer. Math. Soc., 285, 1, 159-184 (1984) · Zbl 0562.35093
[3] Bony, J.-M, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., 14, 2, 209-246 (1981) · Zbl 0495.35024
[4] Bruhat, Y., Sur la théorie des propagateurs, Ann. Mat. Pura Appl., 64, 191-228 (1964) · Zbl 0173.36501
[5] Choquet-Bruhat, Y., Hyperbolic partial differential equations on a manifold, (Battelle Rencontres, 1967 (1968), Benjamin: Benjamin New York), 84-106 · Zbl 0169.43202
[6] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory (1998), Springer-Verlag · Zbl 0893.35138
[7] Cooper, J.; Strauss, W., Representations of the Scattering Operator for Moving Obstacles, Indiana Univ. Math. J., 28, 4, 643-671 (1979) · Zbl 0427.35056
[8] Deser, S.; Jackiw, R.; ’t Hooft, G., Three dimensional Einstein gravity: Dynamics of flat space, Ann. Phys. (NY), 152, 220-235 (1984)
[9] Fourès, Y.; Segal, I. E., Causality and analyticity, Trans. Amer. Math. Soc., 78, 385-405 (1955) · Zbl 0064.36805
[10] Friedlander, F. G., The Wave Equation on a Curved Space-Time (1975), Cambridge University Press · Zbl 0316.53021
[11] Friedman, J. L.; Morris, M. S., Existence and uniqueness theorems for massless fields on a class of spacetimes with closed timelike curves, Comm. Math. Phys., 186, 495-529 (1997) · Zbl 0965.83028
[12] Geroch, R. P., The domain of dependence, J. Math. Phys., 11, 437-449 (1970) · Zbl 0189.27602
[13] Gibbons, G. W.; Herdeiro, C. A.R, Supersymmetric rotating black holes and causality violation, Class. Quantum Grav., 16, 3619-3652 (1999) · Zbl 0956.83050
[14] Gödel, K., An example of a new type of cosmological solution of Einstein’s field equations of gravitation, Rev. Mod. Phys., 21, 447-450 (1949) · Zbl 0041.56701
[15] D. Häfner, Complétude asymptotique pour l’équation des ondes dans une classe d’espaces-temps stationnaires et asymptotiquement plats, Ann. Inst. Fourier 2001); D. Häfner, Complétude asymptotique pour l’équation des ondes dans une classe d’espaces-temps stationnaires et asymptotiquement plats, Ann. Inst. Fourier 2001)
[16] Hawking, S. W., Chronology protection conjecture, Phys. Rev. D, 46, 2, 603-611 (1992)
[17] Hawking, S. W.; Ellis, G. F.R, The Large Scale Structure of Space-Time (1974), Cambridge University Press
[18] Hörmander, L., The Analysis of Linear Partial Differential Operators, I, II, III, IV (1994), Springer-Verlag
[19] Hörmander, L., A remark on the characteristic Cauchy problem, J. Funct. Anal., 93, 270-277 (1990) · Zbl 0724.35060
[20] Ikebe, T., A spectral theory for the reduced wave equation with a complex refractive index, Publ. RIMS Kyoto Univ., 8, 579-606 (1972/73) · Zbl 0261.35066
[21] Kato, T., Perturbation Theory for Linear Operators (1980), Springer-Verlag
[22] B.S. Kay, Application of linear hyperbolic PDE to linear quantum fields incurved spacetimes: especially black holes, time machines and a new semi-local vacuum concept, Journées Equations aux dérivées partielles, Exposé IX, Nantes, 2000; B.S. Kay, Application of linear hyperbolic PDE to linear quantum fields incurved spacetimes: especially black holes, time machines and a new semi-local vacuum concept, Journées Equations aux dérivées partielles, Exposé IX, Nantes, 2000
[23] Kerr, R. P., Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett., 11, 237-238 (1963) · Zbl 0112.21904
[24] Lax, P.; Phillips, R., Scattering Theory (1989), Academic Press
[25] Leray, J., Hyperbolic Differential Equations (1952), Princeton University Press
[26] Lions, J.-L; Magenes, E., Problèmes aux Limites non Homogènes et Applications I (1968), Dunod · Zbl 0165.10801
[27] Melrose, R. B., Geometric Scattering Theory (1995), Cambridge University Press · Zbl 0849.58071
[28] Papapetrou, A., Champs gravitationnels à symétrie axiale, Ann. Inst. Henri Poincaré A, 4, 83-105 (1966) · Zbl 0118.23002
[29] Petkov, V., Scattering Theory for Hyperbolic Operators (1989), North-Holland · Zbl 0687.35067
[30] Reed, M.; Simon, B., The scattering of classical waves from inhomogeneous media, Math. Z., 155, 163-180 (1977) · Zbl 0338.35073
[31] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, Vol. II, III, IV (1975, 1978), Academic Press
[32] van Stockum, W. J., Gravitational field of a distribution of particles rotating about an axis of symetry, Proc. Roy. Soc. Edinburgh, 57, 135-154 (1937) · Zbl 0016.28302
[33] Tipler, F. J., Singularities and causality violation, Ann. Phys., 108, 1-36 (1977) · Zbl 0369.53057
[34] Vainberg, B. R., Asymptotic Methods in Equations of Mathematical Physics (1989), Gordon and Breach · Zbl 0743.35001
[35] Visser, M., Lorentzian Wormholes (1995), Springer-Verlag
[36] M. Zworski, Poisson formulae for resonances, Séminaire E.D.P., Ecole Polytechnique, Exposé XIII, 1996-1997; M. Zworski, Poisson formulae for resonances, Séminaire E.D.P., Ecole Polytechnique, Exposé XIII, 1996-1997
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.