×

Travelling wave solutions of generalized forms of Burgers, Burgers-KdV and Burgers-Huxley equations. (English) Zbl 1078.35109

Summary: Exact travelling wave solutions of generalized forms of Burgers, Burgers-KdV and Burgers-Huxley equations are obtained. The analysis rests mainly on the standard tanh method. The work emphasizes the need for a transformation formula for the case where the parameter \(M\) is non-integer.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
35C05 Solutions to PDEs in closed form
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems

Software:

MACSYMA
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wang, X. Y., Exact and explicit solitary wave solutions for the generalized Fisher equation, Phys. Lett. A, 131, 4/5, 277-279 (1988)
[2] Jeffrey, A.; Mohamad, M. N.B., Exact solutions to the KdV-Burgers’ equation, Wave Motion, 14, 369-375 (1991) · Zbl 0833.35124
[3] Wadati, M., The exact solution of the modified Korteweg-de Vries equation, J. Phys. Soc. Jpn., 32, 1681-1687 (1972)
[4] Kivshar, Y. S.; Pelinovsky, D. E., Self-focusing and transverse instabilities of solitary waves, Phys. Rep., 331, 117-195 (2000)
[5] Hereman, W.; Takaoka, M., Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA, J. Phys. A, 23, 4805-4822 (1990) · Zbl 0719.35085
[6] Malfliet, W., Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60, 7, 650-654 (1992) · Zbl 1219.35246
[7] Malfliet, W., The tanh method: I. Exact solutions of nonlinear evolution and wave equations, Phys. Scr., 54, 563-568 (1996) · Zbl 0942.35034
[8] Malfliet, W., The tanh method: II. Perturbation technique for conservative systems, Phys. Scr., 54, 569-575 (1996) · Zbl 0942.35035
[9] Wazwaz, A. M., The tanh method for travelling wave solutions of nonlinear equations, Appl. Math. Comput., 154, 3, 713-723 (2004) · Zbl 1054.65106
[10] Wazwaz, A. M., Partial Differential Equations: Methods and Applications (2002), Balkema Publishers: Balkema Publishers The Netherlands · Zbl 0997.35083
[11] Wazwaz, A. M., New solitary-wave special solutions with compact support for the nonlinear dispersive \(K(m,n)\) equations, Chaos Solitons Fract., 13, 2, 321-330 (2002) · Zbl 1028.35131
[12] Wazwaz, A. M., Exact specific solutions with solitary patterns for the nonlinear dispersive \(K(m,n)\) equations, Chaos Solitons Fract., 13, 1, 161-170 (2001) · Zbl 1027.35115
[13] Wazwaz, A. M., General compactons solutions for the focusing branch of the nonlinear dispersive \(K(n,n)\) equations in higher dimensional spaces, Appl. Math. Comput., 133, 2/3, 213-227 (2002) · Zbl 1027.35117
[14] Wazwaz, A. M., General solutions with solitary patterns for the defocusing branch of the nonlinear dispersive \(K(n,n)\) equations in higher dimensional spaces, Appl. Math. Comput., 133, 2/3, 229-244 (2002) · Zbl 1027.35118
[15] Wazwaz, A. M., Compactons and solitary patterns structures for variants of the KdV and the KP equations, Appl. Math. Comput., 139, 1, 37-54 (2003) · Zbl 1029.35200
[16] Wazwaz, A. M., A construction of compact and noncompact solutions of nonlinear dispersive equations of even order, Appl. Math. Comput., 135, 2-3, 411-424 (2003) · Zbl 1027.35121
[17] Wazwaz, A. M., Compactons in a class of nonlinear dispersive equations, Math. Comput. Modell., 37, 3/4, 333-341 (2003) · Zbl 1044.35078
[18] Wazwaz, A. M., Distinct variants of the KdV equation with compact and noncompact structures, Appl. Math. Comput., 150, 365-377 (2004) · Zbl 1039.35110
[19] Wazwaz, A. M., Variants of the generalized KdV equation with compact and noncompact structures, Comput. Math. Appl., 47, 583-591 (2004) · Zbl 1062.35120
[20] Wazwaz, A. M., New compactons, solitons and periodic solutions for nonlinear variants of the KdV and the KP equations, Chaos Solitons Fract., 22, 249-260 (2004) · Zbl 1062.35121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.