×

Numerical comparison of the method of transport to a standard scheme. (English) Zbl 1077.35007

The authors compare the Mot-ICE (a multidimensional flux-vector-splitting scheme of S. Noelle [J. Comput. Phys. 164, No. 2, 283–334 (2000; Zbl 0967.65100)] to the classical HLL (Harten-Lax-van Leer) scheme utilizing first and second order versions. The numerical experiments indicate that the MoT-ICE is approximatively as dissipative as the much cheaper HLL scheme. The main observation in favor of MoT-ICE is that for oblique shear wave, the second order version of HLL does not converge to the correct solution, while MoT-ICE does.

MSC:

35A35 Theoretical approximation in context of PDEs
35L65 Hyperbolic conservation laws
76M12 Finite volume methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 0967.65100

Software:

HLLE; HE-E1GODF
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bultelle, M.; Grassin, M.; Serre, D., Unstable Godunov discrete profiles for steady shock waves, SIAM J. Numer. Anal, 35, 6, 2272-2297 (1998) · Zbl 0929.76083
[2] Einfeldt, B., On Godunov-type methods for gas dynamics, SIAM J. Numer. Anal, 25, 2, 294-318 (1988) · Zbl 0642.76088
[3] Engquist, B.; Osher, S., One-sided difference approximations for nonlinear conservation laws, Math. Comput, 36, 154, 321-351 (1981) · Zbl 0469.65067
[4] Fey M. Ein echt mehrdimensionales Verfahren zur Lösung der Eulergleichungen. Dissertation, Zürich, 1993; Fey M. Ein echt mehrdimensionales Verfahren zur Lösung der Eulergleichungen. Dissertation, Zürich, 1993
[5] Fey, M., Multidimensional upwinding. I. The method of transport for solving the Euler equations, J. Comput. Phys, 143, 159-180 (1998) · Zbl 0932.76050
[6] Fey, M., Multidimensional upwinding. II. Decomposition of the Euler equations into advection equations, J. Comput. Phys, 143, 181-199 (1998) · Zbl 0932.76051
[7] Godunov, S. K., A difference scheme for numerical computation of discontinuous solutions of equations of fluid dynamics, Math. Sb, 47, 271-306 (1959) · Zbl 0171.46204
[8] Harten, A.; Lax, P. D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev, 25, 1, 35-61 (1983) · Zbl 0565.65051
[9] Kröger T. Multidimensional systems of hyperbolic conservation laws, numerical schemes, and characteristic theory. Connections, differences and numerical comparison. Dissertation, RWTH Aachen, Germany, 2004; Kröger T. Multidimensional systems of hyperbolic conservation laws, numerical schemes, and characteristic theory. Connections, differences and numerical comparison. Dissertation, RWTH Aachen, Germany, 2004
[10] Kröger T, Noelle S, Zimmermann S. On the connection between some Riemann-solver free approaches to the approximation of multi-dimensional systems of hyperbolic conservation laws. \(M^2\); Kröger T, Noelle S, Zimmermann S. On the connection between some Riemann-solver free approaches to the approximation of multi-dimensional systems of hyperbolic conservation laws. \(M^2\)
[11] Noelle, S., The MoT-ICE: A new high-resolution wave-propagation algorithm for multidimensional systems of conservation laws based on Fey’s method of transport, J. Comput. Phys, 164, 2, 283-334 (2000) · Zbl 0967.65100
[12] Osher, S.; Solomon, F., Upwind difference schemes for hyperbolic systems of conservation laws, Math. Comput, 38, 158, 339-374 (1982) · Zbl 0483.65055
[13] Pandolfi, M.; D’Ambrosio, D., Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” phenomenon, J. Comput. Phys, 166, 2, 271-301 (2001) · Zbl 0990.76051
[14] Quirk, J. J., A contribution of the great Riemann solver debate, Int. J. Numer. Meth. Fluids, 18, 555-574 (1994) · Zbl 0794.76061
[15] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys, 43, 2, 357-372 (1981) · Zbl 0474.65066
[16] Roe, P. L., Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics, J. Comput. Phys, 63, 458-476 (1986) · Zbl 0587.76126
[17] Schmid, P. J.; Henningson, D. S., Stability and transition in shear flows (2001), Springer: Springer New York · Zbl 0966.76003
[18] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, J. Comput. Phys, 83, 1, 32-78 (1989) · Zbl 0674.65061
[19] Sweby, P. K., High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal, 21, 2, 995-1011 (1984) · Zbl 0565.65048
[20] von Törne C. MOTICE-Adaptive, parallel numerical solution of hyperbolic conservation laws. Dissertation, Bonner Mathematische Schriften, No. 334, 2000; von Törne C. MOTICE-Adaptive, parallel numerical solution of hyperbolic conservation laws. Dissertation, Bonner Mathematische Schriften, No. 334, 2000 · Zbl 0971.76001
[21] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics. A practical introduction (1999), Springer: Springer Berlin · Zbl 0923.76004
[22] Toro, E. F.; Spruce, M.; Speares, W., Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 4, 25-34 (1994) · Zbl 0811.76053
[23] Zimmermann, S., The method of transport for the Euler equations written as a kinetic scheme, Int. Ser. Numer. Math, 141, 999-1008 (2001) · Zbl 0929.35118
[24] Zimmermann S. Properties of the method of transport for the Euler equations. Dissertation, Zürich, 2001; Zimmermann S. Properties of the method of transport for the Euler equations. Dissertation, Zürich, 2001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.