×

Numerical approximation of collisional plasmas by high-order methods. (English) Zbl 1076.76053

The evolution of a collisional plasma constituted of different species of particles is commonly described by the Fokker-Planck-Landau equation at the kinetic level. It describes binary collisions between charged particles with long-range Coulomb interactions. Many different deterministic numerical schemes have been considered to Fokker-Planck type equations. Most of these methods have proven their efficiency in the homogeneous case, but few results are available in the nonhomogeneous situation.
The main goal of this paper is to develop a scheme in the position depending case and in the whole 3D velocity space. The first step consists to construct a good approximation of the Vlasov equation. A scheme is proposed, using a phase space grid. Space and velocity derivatives are approximated by a centered finite volume method. An adapted approximation of the electric field allows to obtain a numerical scheme that conserves the total energy. As this kind of discretization does not ensure the positivity of the unknown distribution function, slope correctors are introduced. The distribution function is reconstructed following the second order PFC method. When the slope correctors act the total energy is not conserved anymore. Finally, the collision operator is approximated in the case of interaction of particles of different species. A multigrid method is used to reduce the computational cost.
Several numerical results are presented to illustrate the efficiency of the method. In the context of the Landau damping, the results here are in very good agreement with theoretical results in the literature. For strong perturbations the effect of collisions on the damping of the electric energy and on the long time behavior of the solution is observed.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
82D10 Statistical mechanics of plasmas

Software:

Vador
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Arsen’ev, A. A.; Buryak, O. E., On the connection between a solution of the Boltzmann equation and a solution of the Fokker-Planck-Landau equation, Math. USSR Sbornik, 69, 465-478 (1991) · Zbl 0724.35090
[2] Berezin, Yu. A.; Khudick, V. N.; Pekker, M. S., Conservative finite difference schemes for the Fokker-Planck equation not violating the law of an increasing entropy, J. Comput. Phys, 69, 163-174 (1987) · Zbl 0644.76091
[3] Birdsall, C. K.; Langdon, A. B., Plasma Physics via Computer Simulation (1991), Institute of Physics Publishing: Institute of Physics Publishing Bristol and Philadelphia
[4] Bobylev, A. V.; Potapenko, I. F.; Chuyanov, V. A., Kinetic equations of the Landau type as a model of the Boltzmann equation and completely conservative difference schemes, USSR Comput. Maths. Math. Phys, 20, 190-201 (1981) · Zbl 0493.76078
[5] Buet, C.; Cordier, S., Numerical analysis of conservative and entropy schemes for the Fokker-Planck-Landau equation, SIAM J. Numer. Anal, 36, 953-973 (1999) · Zbl 0940.34037
[6] Buet, C.; Cordier, S., Conservative and entropy decaying numerical scheme for the isotropic Fokker-Planck-Landau equation, J. Comput. Phys, 145, 228-245 (1998) · Zbl 0917.76045
[7] Buet, C.; Cordier, S.; Degond, P.; Lemou, M., Fast algorithms for numerical, conservative and entropy approximations of the Fokker-Planck-Landau equation, J. Comput. Phys, 133, 310-322 (1997) · Zbl 0880.65112
[8] Buet, C.; Cordier, S.; Filbet, F., Comparison of numerical schemes for Fokker-Planck-Landau equation, ESAIM Proc, 10, 161-181 (1999) · Zbl 1015.76061
[9] Buet, C.; Dellacherie, S.; Sentis, R., Numerical solution of an ionic Fokker-Planck equation with electronic temperature, SIAM J. Numer. Anal, 39, 1219-1253 (2001) · Zbl 1004.82012
[10] F.F. Chen, Introduction to Plasma Physics and controlled fusion, 2nd ed., Plenum Press, New York and London; F.F. Chen, Introduction to Plasma Physics and controlled fusion, 2nd ed., Plenum Press, New York and London
[11] DeCoster, A.; Perthame, B.; Marcowich, P., Modeling of Collisions, Series in Applied Mathematics (1998)
[12] Degond, P.; Lucquin-Desreux, B., The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case, M3AS, 2, 167-182 (1992) · Zbl 0755.35091
[13] Degond, P.; Lucquin-Desreux, B., An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory, Numer. Math, 68, 239-262 (1994) · Zbl 0806.65133
[14] J.P. Delcroix, A. Bers, Physique des plasmas, Savoirs Actuels, InterEditions, CNRS Editions, 1994; J.P. Delcroix, A. Bers, Physique des plasmas, Savoirs Actuels, InterEditions, CNRS Editions, 1994
[15] Dellacherie, S., Numerical resolution of an ion-electron collision operator in axisymmetrical geometry. Special issue comprised of papers presented at the Conference on Asymptotic and Numerical Methods for Kinetic Equations (Oberwolfach, 2001), Transp. Theory Stat. Phys, 31, 397-429 (2002) · Zbl 1013.82015
[16] S. Dellacherie, Contribution à l’analyse et à la simulation numériques des équations cinétiques décrivant un plasma chaud, PhD Thesis, Paris 7, 1998; S. Dellacherie, Contribution à l’analyse et à la simulation numériques des équations cinétiques décrivant un plasma chaud, PhD Thesis, Paris 7, 1998
[17] Desvillettes, L., On asymptotics of the Boltzmann equation when the collisions become grazing, Transp. Theory Stat. Phys, 21, 259-276 (1992) · Zbl 0769.76059
[18] Epperlein, E. M., Implicit and conservative difference schemes for the Fokker-Planck equation, J. Comput. Phys, 112, 291-297 (1994) · Zbl 0806.76050
[19] Filbet, F.; Sonnendrücker, E.; Bertrand, P., Conservative numerical schemes for the Vlasov equation, J. Comput. Phys, 172, 166-187 (2001) · Zbl 0998.65138
[20] Filbet, F.; Sonnendrücker, E., Comparison of Eulerian Vlasov solvers, Comput. Phys. Commun, 151, 247-266 (2003) · Zbl 1196.82108
[21] Filbet, F.; Pareschi, L., Numerical method for the accurate solution of the Fokker-Planck-Landau equation in the non homogeneous case, J. Comput. Phys, 179, 1-26 (2002) · Zbl 1003.82011
[22] McKinstrie, C. J.; Giacone, R. E.; Startsev, E. A., Accurate formulas for the Landau damping rates of electrostatic waves, Phys. Plasmas, 6, 463-466 (1999)
[23] Horne, R. B.; Freeman, M. P., A new code for electrostatic simulation by numerical integration of the Vlasov and Ampère equations using MacCormack’s method, J. Comput. Phys, 171, 182-200 (2001) · Zbl 0983.78021
[24] Trad, The transport equation in the case of the Coulomb interaction, (ter Haar, D., Collected papers of L.D. Landau (1981), Pergamon press: Pergamon press Oxford), 163-170
[25] Lemou, M., Multipole expansions for the Fokker-Planck-Landau operator, Numer. Math, 78, 597-618 (1998) · Zbl 0898.65090
[26] Lemou, M., Numerical algorithms for axisymmetric Fokker-Planck-Landau operators, J. Comput. Phys, 157, 762-786 (2000) · Zbl 1050.82030
[27] Lemou, M.; Mieussens, L., Fast implicit schemes for the Fokker-Planck-Landau equation, C. R. Acad. Sci. Paris, Ser, 1, 338 (2004) · Zbl 1081.82022
[28] Manfredi, G., Long time behaviour of the non linear Landau damping, Phys. Rev. Lett, 79, 2815-2818 (1997)
[29] Nanbu, K.; Yonemura, S., Weighted particles in Coulomb collision simulations based on the theory of a cumulative scattering angle, J. Comput. Phys, 145, 639-654 (1998) · Zbl 0929.76103
[30] Nakamura, T.; Yabe, T., Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space, Comput. Phys. Commun, 120, 122-154 (1999) · Zbl 1001.82003
[31] Pareschi, L.; Russo, G.; Toscani, G., Fast spectral methods for Fokker-Planck-Landau collision operator, J. Comput. Phys, 165, 216-236 (2000) · Zbl 1052.82545
[32] Pekker, M. S.; Khudik, V. N., Conservative difference schemes for the Fokker-Planck equation, USSR Comput. Maths. Math. Phys, 24, 206-210 (1984)
[33] Potapenko, I. F.; de Arzevedo, C. A., The completely conservative difference schemes for the nonlinear Landau-Fokker-Planck equation, J. Comput. Appl. Math, 103, 115-123 (1999) · Zbl 0944.65152
[34] Rosenbluth, M. N.; MacDonald, W.; Judd, D. L., Fokker-Planck equation for an inverse square force, Phys. Rev, 107, 1-6 (1957) · Zbl 0077.44802
[35] Shoucri, M.; Knorr, G., Numerical integration of the Vlasov equation, J. Comput. Phys, 14, 84-92 (1974) · Zbl 0275.65029
[36] Villani, C., A review of mathematical topics in collisional kinetic theory, (Frielander, S.; Serre, D., Handbook of Fluid Mechanics (2003)) · Zbl 1170.82369
[37] Zhou, T.; Guo, Y.; Shu, C.-W., Numerical study on Landau damping, Physica D, 157, 322-333 (2001) · Zbl 0972.82083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.