×

On the Painlevé integrability, periodic wave solutions and soliton solutions of generalized coupled higher-order nonlinear Schrödinger equations. (English) Zbl 1072.35586

Summary: It is proven that generalized coupled higher-order nonlinear Schrödinger equations possess the Painlevé property for two particular choices of parameters, using the Weiss-Tabor-Carnevale method and Kruskal’s simplification. Abundant families of periodic wave solutions are obtained by using the Jacobi elliptic function expansion method with the assistance of the symbolic manipulation system Maple. It is also shown that these solutions exactly degenerate to bright soliton, dark soliton and mixed dark and bright soliton solutions with physical interests.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems

Software:

Maple; MACSYMA
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abdullaev, F.; Darmanyan, S.; Khabibullaev, P., Optical solitons (1993), Springer-Verlag: Springer-Verlag Berlin
[2] Hisakado, M.; Wadati, M., J Phys Soc Jpn, 63, 3962 (1994)
[3] Chen, Y.; Atai, J., Optics Commun, 50, 381 (1998)
[4] Porubov, A. V.; Parker, D. F., Wave Motion, 29, 97 (1999)
[5] Sakovich, S. Yu; Tsuchida, T., J Phys A: Math Gen, 33, 7217 (2000)
[6] Tasgal, R. S.; Potasek, M. J., J Math Phys, 33, 1208 (1992)
[7] Hisakado, M.; Iizuka, T.; Wadati, M., J Phys Soc Jpn, 63, 2887 (1994)
[8] Sahadevan, R.; Tamizhmani, K. M.; Lakshmanan, M., J Phys A: Math Gen, 19, 1783 (1986)
[9] Park, Q. H.; Shin, H. J., Phys Rev E, 59, 2373 (1999)
[10] Vinoj, M. N.; Kuriakose, V. C., Phys Rev E, 62, 8719 (2000)
[11] Weiss, J.; Tabor, M.; Carnevale, G., J Math Phys, 24, 522 (1983)
[12] Jimbo, M.; Kruskal, M. D.; Miwa, T., Phys Lett A, 92, 59 (1982)
[13] Xu, G. Q.; Li, Z. B., Comput Phys Commun, 161, 65 (2004)
[14] Ablowitz, M. J.; Clarkson, P. A., Solitons, nonlinear evolution equations and inverse scattering (1991), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0762.35001
[15] Knono, K.; Wadati, M., Prog Theor Phys, 53, 1652 (1975)
[16] Matveev, V. A.; Salle, M. A., Darboux transformations and solitons (1991), Spinger-Verlag: Spinger-Verlag Berlin · Zbl 0744.35045
[17] Hirota, R.; Satsuma, J., Phys Lett A, 85, 407 (1981)
[18] Xu, G. Q.; Li, Z. B., Acta Phys Sin, 52, 1848 (2003), [in Chinese]
[19] Xu, G. Q.; Li, Z. B., Acta Phys Sin, 51, 1424 (2002), [in Chinese]
[20] Li, Z. B.; Liu, Y. P., Comp Phys Commun, 155, 65 (2002)
[21] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q., Phys Lett A, 289, 69 (2001)
[22] Fu, Z. T.; Liu, S. K.; Liu, S. D.; Zhao, Q., Phys Lett A, 290, 72 (2001)
[23] Yan, Z. Y., Commun Theor Phys (Beijing, China), 38, 141 (2002)
[24] Xu, G. Q.; Li, Z. B., The explicit solutions to the coupled KdV equations with variable coefficients, Appl Math Mech, 26, 92 (2005), [in Chinese]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.