×

Isolated and dynamical horizons and their applications. (English) Zbl 1071.83036

Summary: Over the past three decades, black holes have played an important role in quantum gravity, mathematical physics, numerical relativity and gravitational wave phenomenology. However, conceptual settings and mathematical models used to discuss them have varied considerably from one area to another. Over the last five years a new, quasi-local framework was introduced to analyze diverse facets of black holes in a unified manner. In this framework, evolving black holes are modelled by dynamical horizons and black holes in equilibrium by isolated horizons. We review basic properties of these horizons and summarize applications to mathematical physics, numerical relativity, and quantum gravity. This paradigm has led to significant generalizations of several results in black hole physics. Specifically, it has introduced a more physical setting for black hole thermodynamics and for black hole entropy calculations in quantum gravity, suggested a phenomenological model for hairy black holes, provided novel techniques to extract physics from numerical simulations, and led to new laws governing the dynamics of black holes in exact general relativity.

MSC:

83C57 Black holes
83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv EuDML Link

References:

[1] Abrahams, A.M., Rezzolla, L., Rupright, M.E., Anderson, A., Anninos, P., Baumgarte, T.W., Bishop, N.T., Brandt, S.R., Browne, J.C., Camarda, K., Choptuik, M.W., Cook, G.B., Evans, C.R., Finn, L.S., Fox, G., Gómez, R., Haupt, T., Huq, M.F., Kidder, L.E., Klasky, S., Laguna, P., Landry, W., Lehner, L., Lenaghan, J., Marsa, R.L., Massnó, J., Matzner, R.A., Mitra, S., Papadopoulos, P., Parashar, M., Saied, F., Saylor, P.E., Scheel, M.A., Seidel, E., Shapiro, S.L., Shoemaker, D.M., Smarr, L.L., Szilágyi, B., Teukolsky, S.A., van Putten, M.H.P.M., Walker, P., Winicour, J., and York Jr, J.W. (The Binary Black Hole Grand Challenge Alliance), “Gravitational wave extraction and outer boundary conditions by perturbative matching”, Phys. Rev. Lett., 80, 1812-1815, (1998). For a related online version see: A.M. Abrahams, et al., (September, 1997), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9709082
[2] Alcubierre, M., Benger, W., Brügmann, B., Lanfermann, G., Nerger, L., Seidel, E., and Takahashi, R., “3D Grazing Collision of Two Black Holes”, Phys. Rev. Lett., 87, 271103-1-4, (2001). For a related online version see: M. Alcubierre, et al., (December, 2000), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0012079
[3] Alcubierre, M., Brögmann, B., Pollney, D., Seidel, E., and Takahashi, R., “Black hole excision for dynamic black holes”, Phys. Rev. D, 64, 061501-1-5, (2001). For a related online version see: M. Alcubierre, et al., (April, 2001), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0104020 5
[4] Andrade, Z., Beetle, C., Blinov, A., Bromley, B., Burko, L.M., Cranor, M., Owen, R., and Price, R.H., “Periodic standing-wave approximation: Overview and three-dimensional scalar models”, Phys. Rev. D, 70, 064001-1-14, (2003).
[5] Anninos, P., Bernstein, D., Brandt, S., Hobill, D., Seidel, E., and Smarr, L.L., “Dynamics of Black Hole Apparent Horizons”, Phys. Rev. D, 50, 3801-3819, (1994).
[6] Anninos, P., Camarda, K., Libson, J., Massó, J., Seidel, E., and Suen, W.-M., “Finding apparent horizons in dynamic 3D numerical spacetimes”, Phys. Rev. D, 58, 24003-1-12, (1998). For a related online version see: P. Anninos, et al., (September, 1996), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9609059
[7] Arnowitt, R.; Deser, S.; Misner, CW; Witten, L. (ed.), The dynamics of general relativity, 227-265 (1962), New York, U.S.A.
[8] Ashtekar, A., “Black Hole Entropy: Inclusion of Distortion and Angular Momentum”, (2003), [Online Presentation]: cited on 22 November 2004, http://www.phys.psu.edu/events/index.html?event_id=517.
[9] Ashtekar, A., Personal communication to Corichi, A., Kleihaus, B., and Kunz, J., (2002).
[10] Ashtekar, A., Baez, J., Corichi, A., and Krasnov, K., “Quantum geometry and black hole entropy”, Phys. Rev. Lett., 80, 904-907, (1998). For a related online version see: A. Ashtekar, et al., (1997), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9710007. · Zbl 0949.83024
[11] Ashtekar, A., Baez, J., and Krasnov, K., “Quantum Geometry of Isolated Horizons and Black Hole Entropy”, Adv. Theor. Math. Phys., 4, 1-94, (2000). For a related online version see: A. Ashtekar, et al., (2000), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0005126. · Zbl 0981.83028
[12] Ashtekar, A., Beetle, C., Dreyer, O., Fairhurst, S., Krishnan, B., Lewandowski, J., and Wisniewski, J., “Generic isolated horizons and their applications”, Phys. Rev. Lett., 85, 3564-3567, (2000). For a related online version see: A. Ashtekar, et al., (2000), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0006006. · Zbl 1369.83036
[13] Ashtekar, A., Beetle, C., and Fairhurst, S., “Isolated Horizons: A Generalization of Black Hole Mechanics”, Class. Quantum Grav., 16, L1-L7, (1999). For a related online version see: A. Ashtekar, et al., (1998), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9812065. · Zbl 0947.83027
[14] Ashtekar, A., Beetle, C., and Fairhurst, S., “Mechanics of isolated horizons”, Class. Quantum Grav., 17, 253-298, (2000). For a related online version see: A. Ashtekar, et al., (1999), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9907068. · Zbl 0948.83001
[15] Ashtekar, A., Beetle, C., and Lewandowski, J., “Mechanics of rotating isolated horizons”, Phys. Rev. D, 64, 044016-1-17, (2001). For a related online version see: A. Ashtekar, et al., (2001), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0103026.
[16] Ashtekar, A., Beetle, C., and Lewandowski, J., “Geometry of generic isolated horizons”, Class. Quantum Grav., 19, 1195-1225, (2002). For a related online version see: A. Ashtekar, et al., (2001), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0111067. · Zbl 0998.83012
[17] Ashtekar, A., and Bojowald, M., in preparation.
[18] Ashtekar, A.; Bombelli, L.; Reula, OA; Francaviglia, M. (ed.); Holm, D. (ed.), Covariant phase space of asymptotically flat gravitational fields, 417-450 (1990), Amsterdam, Netherlands; New York, U.S.A.
[19] Ashtekar, A., and Corichi, A., “Laws governing isolated horizons: Inclusion of dilaton coupling”, Class. Quantum Grav., 17, 1317-1332, (2000). For a related online version see: A. Ashtekar, et al., (October, 1999), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9910068. · Zbl 0983.83018
[20] Ashtekar, A., and Corichi, A., “Non-minimal couplings, quantum geometry and black hole entropy”, Class. Quantum Grav., 20, 4473-4484, (2003). · Zbl 1050.83014
[21] Ashtekar, A., Corichi, A., and Sudarsky, D., “Hairy black holes, horizon mass and solitons”, Class. Quantum Grav., 18, 919-940, (2001). For a related online version see: A. Ashtekar, et al., (November, 2000), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0011081. · Zbl 0973.83035
[22] Ashtekar, A., Corichi, A., and Sudarsky, D., “Non-Minimally Coupled Scalar Fields and Isolated Horizons”, Class. Quantum Grav., 20, 3513-3425, (2003). · Zbl 1055.83026
[23] Ashtekar, A., Dreyer, O., and Wisniewski, J., “Isolated Horizons in 2+1 Gravity”, Adv. Theor. Math. Phys., 6, 507-555, (2002). For a related online version see: A. Ashtekar, et al., (June, 2002), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0206024. · Zbl 1031.83009
[24] Ashtekar, A., Engle, J., Pawlowski, T., and van den Broeck, C., “Multipole moments of isolated horizons”, Class. Quantum Grav., 21, 2549-2570, (2004). For a related online version see: A. Ashtekar, et al., (January, 2004), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0401114. · Zbl 1052.83005
[25] Ashtekar, A., Engle, J., and Van den Broek, C., “Quantum geometry of isolated horizons and black hole entropy: Inclusion of distortion and rotation”, (December, 2004), [Online Los Alamos Archive Preprint]: cited on 13 December 2004, http://arXiv.org/abs/gr-qc/0412003. · Zbl 1062.83050
[26] Ashtekar, A., Fairhurst, S., and Krishnan, B., “Isolated horizons: Hamiltonian evolution and the first law”, Phys. Rev. D, 62, 104025-1-29, (2000). For a related online version see: A. Ashtekar, et al., (2000), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0005083.
[27] Ashtekar, A., and Galloway, G., in preparation, (2004).
[28] Ashtekar, A., Hayward, S.A., and Krishnan, B., in preparation.
[29] Ashtekar, A.; Krasnov, K.; Iyer, B. (ed.); Bhawal, B. (ed.), Quantum Geometry and Black Holes, No. volume 100, 149-170 (1999), Dordrecht, Netherlands; Boston, U.S.A. · Zbl 0948.83033
[30] Ashtekar, A., and Krishnan, B., “Dynamical Horizons: Energy, Angular Momentum, Fluxes, and Balance Laws”, Phys. Rev. Lett., 89, 261101-1-4, (2002). For a related online version see: A. Ashtekar, et al., (2002), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0207080. · Zbl 1267.83023
[31] Ashtekar, A., and Krishnan, B., “Dynamical horizons and their properties”, Phys. Rev. D, 68, 104030-1-25, (2003). For a related online version see: A. Ashtekar, et al., (2003), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0308033.
[32] Ashtekar, A., and Lewandowski, J., “Background independent quantum gravity: A status report”, Class. Quantum Grav., 21, R53-R152, (2004). For a related online version see: A. Ashtekar, et al., (April, 2004), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0404018. · Zbl 1077.83017
[33] Ashtekar, A., and Streubel, M., “Symplective geometry of radiative fields at null infinity”, Proc. R. Soc. London, Ser. A, 376, 585-607, (1981).
[34] Baiotti, L., Hawke, I., Montero, P.J., Löffler, F., Rezzolla, L., Stergioulas, N., Font, J.A., and Seidel, E., “Three-dimensional relativistic simulations of rotating neutron star collapse to a black hole”, (March, 2004), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0403029.
[35] Bardeen, J.M., Carter, B., and Hawking, S.W., “The four laws of black hole mechanics”, Commun. Math. Phys., 31, 161-170, (1973). · Zbl 1125.83309
[36] Barreira, M., Carfora, M., and Rovelli, C., “Physics with non-perturbative quantum gravity: Radiation from a quantum black hole”, Gen. Relativ. Gravit., 28, 1293-1299, (1996). · Zbl 0875.83060
[37] Bartnik, R., and Isenberg, J.A., “Summary of spherically symmetric dynamical horizons”, Personal communication to A. Ashtekar. · Zbl 1097.83017
[38] Bartnik, R., and McKinnon, J., “Particlelike solutions of the Einstein-Yang-Mills Equations”, Phys. Rev. Lett., 61, 141-144, (1988).
[39] Baumgarte, T.W., “Innermost stable circular orbit of binary black holes”, Phys. Rev. D, 62, 024018-1-8, (July, 2000). For a related online version see: T.W. Baumgarte, (April, 2000), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0004050.
[40] Beig, R., “The multipole expansion in general relativity”, Acta Phys. Austriaca, 53, 249-270, (1981).
[41] Beig, R., and Simon, W., “Proof of a multipole conjecture due to Geroch”, Commun. Math. Phys., 78, 1163-1171, (1980). · Zbl 0456.53036
[42] Beig, R., and Simon, W., “On the multipole expansion of stationary spacetimes”, Proc. R. Soc. London, Ser. A, 376, 333-341, (1981). · Zbl 0456.53037
[43] Beig, R., and Simon, W., “The multipole structure of stationary spacetimes”, J. Math. Phys., 24, 1163-1171, (1983). · Zbl 0515.53025
[44] Bekenstein, J.D., “Black Holes and Entropy”, Phys. Rev. D, 7, 2333-2346, (1973). · Zbl 1369.83037
[45] Bekenstein, J.D., “Generalized second law of thermodynamics in black-hole physics”, Phys. Rev. D, 9, 3292-3300, (1974).
[46] Bekenstein, J.D., and Meisels, A., “Einstein A and B coefficients for a black hole”, Phys. Rev. D, 15, 2775-2781, (1977).
[47] Ben-Dov, I., “The Penrose inequality and apparent horizons”, (August, 2004), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0408066.
[48] Beyer, F., Krishnan, B., and Schnetter, E., in preparation.
[49] Bizoń, P., “Colored Black Holes”, Phys. Rev. Lett., 64, 2844-2847, (1990). · Zbl 1050.83506
[50] Bizoń, P., and Chmaj, T., “Gravitating skyrmions”, Phys. Lett. B, 297, 55-62, (1992).
[51] Bizoń, P., and Chmaj, T., “Remark on formation of colored black holes via fine-tuning”, Phys. Rev. D, 61, 067501-1-2, (2000). For a related online version see: P. Bizoń, et al., (June, 1999), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9906070.
[52] Bizoń, P., and Wald, R.M., “The n=1 colored black hole is unstable”, Phys. Lett. B, 267, 173-174, (1991).
[53] Blackburn, J.K., and Detweiler, S., “Close black-hole binary systems”, Phys. Rev. D, 46, 2318-2333, (1992).
[54] Bondi, H., van der Burg, M.G.J., and Metzner, A.W.K., “Gravitational waves in general relativity VII: Waves from axi-symmetric isolated systems”, Proc. R. Soc. London, Ser. A, 269, 21, (1962). · Zbl 0106.41903
[55] Booth, I., “Metric-based Hamiltonians, null boundaries, and isolated horizons”, Class. Quantum Grav., 18, 4239-4264, (2001). For a related online version see: I. Booth, (May, 2001), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0105009. · Zbl 1005.83008
[56] Booth, I., and Fairhurst, S., “The First Law for Slowly Evolving Horizons”, Phys. Rev. Lett., 92, 011102-1-4, (2004). For a related online version see: I. Booth, et al., (2003), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0307087.
[57] Bowen, J.M., and York Jr, J.W., “Time-asymmetric initial data for black holes and black-hole collisions”, Phys. Rev. D, 21, 2047-2056, (1980).
[58] Brandt, S.R., Correll, R.R., Gómez, R., Huq, M.F., Laguna, P., Lehner, L., Marronetti, P., Matzner, R., Neilsen, D., Pullin, J., Schnetter, E., Shoemaker, D.M., and Winicour, J., “Grazing collision of black holes via the excision of singularities”, Phys. Rev. Lett., 85, 5496-5499, (2000). For a related online version see: S.R. Brandt, et al., (September, 2000), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0009047. · Zbl 1369.83038
[59] Bray, H., “Proof of the Riemannian Penrose inequality using the positive mass theorem”, J. Differ. Geom., 59, 177, (2001). · Zbl 1039.53034
[60] Breitenlohner, P., Forgnacs, P., and Maison, D., “On static spherically symmetric solutions of the Einstein-Yang-Mills equations”, Commun. Math. Phys., 163, 141-172, (1994). · Zbl 0809.53081
[61] Breitenlohner, P., Forgacs, P., and Maison, D., “Gravitating monopole solutions II”, Nucl. Phys. B, 442, 126-156, (1995). · Zbl 0990.81574
[62] Bretón, N., “Born-Infeld black hole in the isolated horizon framework”, Phys. Rev. D, 67, 124004-1-4, (2003). For a related online version see: N. Bretonn, (January, 2003), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/hep-th/0301254.
[63] Brill, D.R., and Lindquist, R.W., “Interaction Energy in Geometrostatics”, Phys. Rev., 131, 471-476, (1963). · Zbl 0117.23604
[64] Bruögmann, B., Tichy, W., and Jansen, N., “Numerical Simulation of Orbiting Black Holes”, Phys. Rev. Lett., 92, 211101, (2004). For a related online version see: B. Brügmann, et al., (December, 2003), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0312112.
[65] Carter, B.; DeWitt, C. (ed.); DeWitt, BS (ed.), Black hole equilibrium states, 57-214 (1973), New York, U.S.A.
[66] Chandrasekhar, S., The Mathematical Theory of Black Holes, volume 69 of The International Series of Monographs on Physics, (Clarendon Press, Oxford, U.K., 1983). · Zbl 0511.53076
[67] Choptuik, M.W., “Universality and scaling in gravitational collapse of a massless scalar field”, Phys. Rev. Lett., 70, 9-12, (1993).
[68] Chruściel, P.T., “On the global structure of Robinson-Trautman space-time”, Proc. R. Soc. London, Ser. A, 436, 299-316, (1992). · Zbl 0764.53050
[69] Chruściel, PT; Beem, JK (ed.); Duggal, KL (ed.), No Hair Theorems Folklore, Conjectures, Results, No. volume 170, 23-49 (1994), Providence, U.S.A. · Zbl 0864.53068
[70] Cook, G.B., “Initial Data for Numerical Relativity”, Living Rev. Relativity, 2, (2000), [Online Journal Article]: cited on 22 November 2004, http://www.livingreviews.org/lrr-2000-5. · Zbl 1024.83001
[71] Cook, G.B., “Three-dimensional initial data for the collision of two black holes II: Quasicircular orbits for equal mass black holes”, Phys. Rev. D, 50, 5025-5032, (October, 1994). For a related online version see: G.B. Cook, (April, 1994), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9404043.
[72] Cook, G.B., “Corotating and irrotational binary black holes in quasicircular orbits”, Phys. Rev. D, 65, 084003-1-13, (2002). For a related online version see: G.B. Cook, (August, 2001), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0108076.
[73] Cook, G.B., Huq, M.F., Klasky, S.A., Scheel, M.A., Abrahams, A.M., Anderson, A., Anninos, P., Baumgarte, T.W., Bishop, N.T., Brandt, S.R., Browne, J.C., Camarda, K., Choptuik, M.W., Evans, C.R., Finn, L.F., Fox, G.C., Gómez, R., Haupt, T., Kidder, L.E., Laguna, P., Landry, W., Lehner, L., Lenaghan, J., Marsa, R.L., Massó, J., Matzner, R.A., Mitra, S., Papadopoulos, P., Parashar, M., Rezzolla, L., Rupright, M.E., Saied, F., Saylor, P.E., Seidel, E., Shapiro, S.L., Shoemaker, D.M., Smarr, L.L., Suen, W.-M., Szilágyi, B., Teukolsky, S.A., van Putten, M.H.P.M., Walker, P., Winicour, J., and York Jr, J.W. (Binary Black Hole Grand Challenge Alliance), “Boosted Three-Dimensional Black-Hole Evolutions with Singularity Excision”, Phys. Rev. Lett., 80, 2512-2516, (1998). For a related online version see: G.B. Cook, et al., (November, 1997), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9711078. Binary Black Hole Grand Challenge Alliance.
[74] Cook, G.B., and Pfeiffer, H.P., “Excision boundary conditions for black-hole initial data”, Phys. Rev. D, 70, 104016-1-24, (2004).
[75] Corichi, A., Nucamendi, U., and Sudarsky, D., “Einstein-Yang-Mills isolated horizons: Phase space, mechanics, hair, and conjectures”, Phys. Rev. D, 62, 044046-1-19, (2000). For a related online version see: A. Corichi, et al., (February, 2000), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0002078.
[76] Corichi, A., Nucamendi, U., and Sudarsky, D., “Mass formula for Einstein-Yang-Mills solitons”, Phys. Rev. D, 64, 107501-1-4, (2001). For a related online version see: A. Corichi, et al., (June, 2001), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0106084.
[77] Corichi, A., and Sudarsky, D., “Mass of colored black holes”, Phys. Rev. D, 61, 101501-1-4, (2000). For a related online version see: A. Corichi, et al., (December, 1999), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9912032.
[78] Cutler, C.; Thorne, KS; Bishop, NT (ed.); Maharaj, SD (ed.), An Overview of Gravitational-Wave Sources, 72-111 (2002), Singapore; River Edge, U.S.A. · Zbl 1170.83354
[79] Dain, S., “Black hole interaction energy”, Phys. Rev. D, 66, 084019-1-8, (2002). For a related online version see: S. Dain, (July, 2002), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0207090.
[80] Dain, S., “Trapped surfaces as boundaries for the constraint equations”, Class. Quantum Grav., 21, 555-574, (2004). For a related online version see: S. Dain, (August, 2003), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0308009. · Zbl 1050.83019
[81] Dain, S., Jaramillo, J.L., and Krishnan, B.
[82] Diener, P., personal communication to B. Krishnan.
[83] Diener, P., “A new general purpose event horizon finder for 3D numerical spacetimes”, Class. Quantum Grav., 20, 4901-4918, (2003). For a related online version see: P. Diener, (2003), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0305039. · Zbl 1170.83409
[84] Domagala, M., and Lewandowski, J., “Black-hole entropy from quantum geometry”, Class. Quantum Grav., 21, 5233-5243, (2004). For a related online version see: M. Domagala, et al., (2004), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0407051. · Zbl 1062.83053
[85] Dreyer, O., Krishnan, B., Schnetter, E., and Shoemaker, D.M., “Introduction to isolated horizons in numerical relativity”, Phys. Rev. D, 67, 024018-1-14, (2003). For a related online version see: O. Dreyer, et al., (June, 2002), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0206008.
[86] Eardley, D.M., “Black Hole Boundary Conditions and Coordinate Conditions”, Phys. Rev. D, 57, 2299-2304, (1998). For a related online version see: D.M. Eardley, (1997), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9703027.
[87] Ernst, F.J., “Black holes in a magnetic universe”, J. Math. Phys., 17, 54-56, (1976).
[88] Fairhurst, S., and Krishnan, B., “Distorted black holes with charge”, Int. J. Mod. Phys. D, 10, 691-710, (2001). For a related online version see: S. Fairhurst, et al., (October, 2000), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0010088. · Zbl 1155.83346
[89] Finn, L.S., Personal communication to A. Ashtekar.
[90] Friedman, J.L., Schleich, K., and Witt, D.M., “Topological censorship”, Phys. Rev. Lett., 71, 1486-1489, (1993). For a related online version see: J.L. Friedman, et al., (May, 1993), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9305017. Erratum: Phys. Rev. Lett. 75 (1995) 1872. · Zbl 0934.83033
[91] Friedman, J.L., Uryu, K., and Shibata, M., “Thermodynamics of binary black holes and neutron stars”, Phys. Rev. D, 65, 064035-1-20, (2002). For a related online version see: J.L. Friedman, et al., (June, 2001), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0108070.
[92] Friedrich, H., “On the regular and asymptotic characteristic initial value problem for Einstein’s field equations”, Proc. R. Soc. London, Ser. A, 375, 169-184, (1981). · Zbl 0454.58017
[93] Galloway, G.J., personal communication to A. Ashtekar, (2004).
[94] Gambini, R., Obregon, O., and Pullin, J., “Yang-Mills analogs of the Immirzi ambiguity”, Phys. Rev. D, 59, 047505-1-4, (1999). For a related online version see: R. Gambini, et al., (2001), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9801055.
[95] Garfinkle, D., Horowitz, G.T., and Strominger, A., “Charged black holes in string theory”, Phys. Rev. D, 43, 3140-3143, (1991).
[96] Garfinkle, D., Horowitz, G.T., and Strominger, A., “Erratum: Charged black holes in string theory”, Phys. Rev. D, 45, 3888, (1992).
[97] Geroch, R., “Multipole moments II. Curved space”, J. Math. Phys., 11, 2580-2588, (1970). · Zbl 1107.83312
[98] Geroch, R., and Hartle, J.B., “Distorted Black Holes”, J. Math. Phys., 23, 680, (1982).
[99] Gibbons, G.W., and Hawking, S.W., “Cosmological event horizons, thermodynamics, and particle creation”, Phys. Rev. D, 15, 2738-2751, (1977).
[100] Gibbons, G.W., Kallosh, R.E., and Kol, B., “Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics”, Phys. Rev. Lett., 77, 4992-4995, (1996).
[101] Gibbons, G.W., and Maeda, K., “Black holes and membranes in higher-dimensional theories with dilaton fields”, Nucl. Phys. B, 298, 741-775, (1998).
[102] Gonzalez, J., and van den Broeck, C., in preparation.
[103] Gourgoulhon, E., Grandclément, P., and Bonazzola, S., “Binary black holes in circular orbits. I. A global spacetime approach”, Phys. Rev. D, 65, 044020-1-19, (2002). For a related online version see: E. Gourgoulhon, et al., (June, 2001), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0106015.
[104] Grandclément, P., Gourgoulhon, E., and Bonazzola, S., “Binary black holes in circular orbits. II. Numerical methods and first results”, Phys. Rev. D, 65, 044021-1-18, (2002). For a related online version see: P. Grandclément, et al., (June, 2001), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0106016.
[105] Gundlach, C., “Critical phenomena in gravitational collapse”, Adv. Theor. Math. Phys., 2, 1-49, (1998). For a related online version see: C. Gundlach, (December, 1997), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9712084. · Zbl 0907.53057
[106] Hájíček, P., “Stationary electrovacuum spacetimes with bifurcate horizons”, J. Math. Phys., 16, 518-522, (1975).
[107] Hansen, R., “Multipole moments in stationary space-times”, J. Math. Phys., 15, 46-52, (1974). · Zbl 1107.83304
[108] Hartle, J.B., and Hawking, S.W., “Energy and Angular Momentum Flow in to a Black Hole”, Commun. Math. Phys., 27, 283-290, (1972).
[109] Hartmann, B., Kleihaus, B., and Kunz, J., “Axially symmetric monopoles and black holes in Einstein-Yang-Mills-Higgs theory”, Phys. Rev. D, 65, 024027-1-22, (2002). For a related online version see: B. Hartmann, et al., (2001), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/hep-th/0108129.
[110] Hawking, S.W., “Black Holes in General Relativity”, Commun. Math. Phys., 25, 152, (1972).
[111] Hawking, SW; DeWitt, C. (ed.); DeWitt, BS (ed.), The event horizon, 1-56 (1973), New York, U.S.A.
[112] Hawking, S.W., “Particle Creation by Black Holes”, Commun. Math. Phys., 43, 199, (1975). · Zbl 1378.83040
[113] Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K., 1973). · Zbl 0265.53054
[114] Hawking, S.W., and Hunter, C.J., “Gravitational entropy and global structure”, Phys. Rev. D, 59, 044025-1-10, (1999). For a related online version see: S.W. Hawking, et al., (1998), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/hep-th/9808085.
[115] Hayward, S., “Energy and entropy conservation for dynamical black holes”, Phys. Rev. D, 70, 104027-1-13, (2004). For a related online version see: S. Hayward, (August, 2004), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0408008.
[116] Hayward, S.A., “Energy conservation for dynamical black holes”, (April, 2004), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0404077.
[117] Hayward, S.A., “General laws of black-hole dynamics”, Phys. Rev. D, 49, 6467-6474, (1994). For a related online version see: S.A. Hayward, (1993), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9303006.
[118] Hayward, S.A., “Spin-Coefficient Form of the New Laws of Black-Hole Dynamics”, Class. Quantum Grav., 11, 3025-3036, (1994). For a related online version see: S.A. Hayward, (1994), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9406033. · Zbl 0817.53055
[119] Heusler, M., Black Hole Uniqueness Theorems, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1996). · Zbl 0945.83001
[120] Horowitz, GT; Wald, RM (ed.), Quantum States of Black Holes, 241-266 (1998), Chicago, U.S.A. · Zbl 0946.83032
[121] Hughes, S.A., Keeton II, C.R., Walker, P., Walsh, K.T., Shapiro, S.L., and Teukolsky, S.A., “Finding black holes in numerical spacetimes”, Phys. Rev. D, 49, 4004-4015, (1994).
[122] Huisken, G., and Ilmanen, T., “The inverse mean curvature flow and the Riemannian Penrose inequality”, J. Differ. Geom., 59, 353, (2001). · Zbl 1055.53052
[123] Jacobson, T., Kang, G., and Myers, R.C., “On black hole entropy”, Phys. Rev. D, 49, 6587-6598, (1994).
[124] Jaramillo, J.L., Gourgoulhon, E., and Mena Marugán, G.A., “Inner boundary conditions for black hole Initial Data derived from Isolated Horizons”, (2004), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0407063.
[125] Kastor, D., and Traschen, J., “Cosmological multi-black-hole solutions”, Phys. Rev. D, 47, 5370-5375, (1993).
[126] Khanna, G., Baker, J., Gleiser, R.J., Laguna, P., Nicasio, C.O., Nollert, H.-P., Price, R.H., and Pullin, J., “Inspiraling Black Holes: The Close Limit”, Phys. Rev. Lett., 83, 3581-3584, (1999). For a related online version see: G. Khanna, et al., (May, 1999), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9905081. · Zbl 0949.83046
[127] Kleihaus, B., and Kunz, J., “Static Black-Hole Solutions with Axial Symmetry”, Phys. Rev. Lett., 79, 1595-1598, (1997). · Zbl 1042.83519
[128] Kleihaus, B., and Kunz, J., “Static axially symmetric Einstein-Yang-Mills-Dilaton solutions: 1. Regular solutions”, Phys. Rev. D, 57, 843-856, (1998). · Zbl 1042.83513
[129] Kleihaus, B., and Kunz, J., “Static axially symmetric Einstein-Yang-Mills-Dilaton solutions: 2. Black hole solutions”, Phys. Rev. D, 57, 6138-6157, (1998).
[130] Kleihaus, B., and Kunz, J., “Non-Abelian black holes with magnetic dipole hair”, Phys. Lett. B, 494, 130-134, (2000). For a related online version see: B. Kleihaus, et al., (2000), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/hep-th/0008034. · Zbl 0983.83032
[131] Kleihaus, B., Kunz, J., and Navarro-Lnerida, F., “Rotating dilaton black holes with hair”, Phys. Rev. D, 69, 064028-1-30, (2004). For a related online version see: B. Kleihaus, et al., (June, 2003), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0306058.
[132] Kleihaus, B., Kunz, J., Sood, A., and Wirschins, M., “Horizon properties of Einstein-Yang-Mills black hole”, Phys. Rev. D, 65, 061502-1-4, (2002).
[133] Korzynski, N., Lewandowski, J., and Pawlowski, T., “Mechanics of isolated horizons in higher dimensions”, in preparation. · Zbl 1071.83012
[134] Krasnov, K., “Geometrical entropy from loop quantum gravity”, Phys. Rev. D, 55, 3505-3513, (1997).
[135] Krasnov, K., “On statistical mechanics of Schwarzschild black holes”, Gen. Relativ. Gravit., 30, 53-68, (1998). · Zbl 0910.58045
[136] Krishnan, B., Isolated Horizons in Numerical Relativity, PhD Thesis, (The Pennsylvania State University, University Park, U.S.A., 2002). For a related online version see: B. Krishnan, (2002), [Online Thesis]: cited on 22 November 2004, http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-177/.
[137] Kuroda, Y., “Naked Singularities in the Vaidya Spacetimee”, Prog. Theor. Phys., 72, 63-72, (1984). · Zbl 1074.83524
[138] Lehner, L., “Numerical Relativity: A review”, Class. Quantum Grav., 18, R25-R86, (2001). For a related online version see: L. Lehner, (June, 2001), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0106072. · Zbl 0987.83001
[139] Lehner, L., Bishop, N.T., Gómez, R., Szilágyi, B., and Winicour, J., “Exact solutions for the intrinsic geometry of black hole coalescence”, Phys. Rev. D, 60, 044005-1-10, (1999). For a related online version see: L. Lehner, et al., (September, 1998), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9809034.
[140] Lewandowski, J., “Spacetimes admitting isolated horizons”, Class. Quantum Grav., 17, L53-L59, (2000). For a related online version see: J. Lewandowski, (July, 1999), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9907058. · Zbl 0968.83010
[141] Lewandowski, J., and Pawlowski, T., “Quasi-local rotating black holes in higher dimension: geometry”, (October, 2004), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0410146. · Zbl 1097.83020
[142] Lewandowski, J., and Pawlowski, T., “Geometric characterizations of the Kerr isolated horizon”, Int. J. Mod. Phys. D, 11, 739-746, (2001). For a related online version see: J. Lewandowski, et al., (December, 2001), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0101008. · Zbl 1062.83528
[143] Lewandowski, J., and Pawlowski, T., “Extremal isolated horizons: a local uniqueness theorem”, Class. Quantum Grav., 20, 587-606, (2003). For a related online version see: J. Lewandowski, et al., (August, 2002), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0208032. · Zbl 1028.83025
[144] Lichnerowicz, A., “L’integration des équations de la gravitation relativiste et le probléme des n corps”, J. Math. Pures Appl., 23, 37-63, (1944). · Zbl 0060.44410
[145] Maldacena, J., and Strominger, A., “Statistical entropy of four-dimensional extremal black holes”, Phys. Rev. Lett., 77, 428-429, (1996). For a related online version see: J. Maldacena, et al., (March, 1996), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/hep-th/9603060.
[146] Mann, R.B., “Misner string entropy”, Phys. Rev. D, 60, 104047-1-5, (1999). For a related online version see: R.B. Mann, (March, 1999), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/hep-th/9903229.
[147] Mann, R.B., and Garfinkle, D., “Generalized entropy and Noether charge”, Class. Quantum Grav., 17, 3317-3324, (2000). For a related online version see: R.B. Mann, et al., (2000), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0004056. · Zbl 0967.83016
[148] Masood-ul Alam, A.K.M., “Uniqueness of a static charged dilaton black hole”, Class. Quantum Grav., 10, 2649-2656, (1993). · Zbl 0787.53081
[149] Meissner, K.A., “Black-hole entropy in loop quantum gravity”, Class. Quantum Grav., 21, 5245-5252, (2004). For a related online version see: K.A. Meissner, (July, 2004), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0407052. · Zbl 1062.83056
[150] Misner, C.W., “Wormhole Initial Conditions”, Phys. Rev., 118, 1110-1111, (1959). · Zbl 0090.44205
[151] Misner, C.W., “The method of images in geometrostatics”, Ann. Phys. (N.Y.), 24, 102-117, (1963). · Zbl 0112.44202
[152] Nakao, K., Shiromizu, T., and Hayward, S.A., “Horizons of the Kastor-Traschen multi-black-hole cosmos”, Phys. Rev. D, 52, 796-808, (1995).
[153] New, K.C.B., “Gravitational Waves from Gravitational Collapse”, Living Rev. Relativity, 6, (2003), [Online Journal Article]: cited on 22 November 2004, http://www.livingreviews.org/lrr-2003-2. · Zbl 1023.83009
[154] Núñez, D., Quevedo, H., and Sudarsky, D., “Black Holes have no Short Hair”, Phys. Rev. Lett., 76, 571-574, (1996). For a related online version see: D. Núñez, et al., (January, 1996), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9601020. · Zbl 0955.83504
[155] Pawlowski, T., Lewandowski, J., and Jezierski, J., “Spacetimes foliated by Killing horizons”, Class. Quantum Grav., 21, 1237-1252, (2004). For a related online version see: T. Pawlowski, et al., (June, 2003), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0306107. · Zbl 1055.83004
[156] Pejerski, D.W., and Newman, E.T., “Trapped surface and the development of singularities”, J. Math. Phys., 9, 1929-1937, (1971).
[157] Penrose, R., “Naked singularities”, Ann. N.Y. Acad. Sci., 224, 125-134, (1973). · Zbl 0925.53023
[158] Pfeiffer, H.P., Cook, G.B., and Teukolsky, S.A., “Comparing initial-data sets for binary black holes”, Phys. Rev. D, 66, 024047-1-17, (2002). For a related online version see: H.P. Pfeiffer, et al., (June, 2002), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0203085.
[159] Pfeiffer, H.P., Teukolsky, S.A., and Cook, G.B., “Quasicircular orbits for spinning binary black holes”, Phys. Rev. D, 62, 104018-1-11, (2000). For a related online version see: H.P. Pfeiffer, et al., (June, 2000), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0006084.
[160] Pullin, J., “The close limit of colliding black holes: An update”, Prog. Theor. Phys. Suppl., 136, 107-120, (1999). For a related online version see: J. Pullin, (September, 1999), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9909021. · Zbl 0986.83023
[161] Rendall, A.D., “Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations”, Proc. R. Soc. London, Ser. A, 427, 221-239, (1990). · Zbl 0701.35149
[162] Rovelli, C., “Loop Quantum Gravity”, Living Rev. Relativity, 1, (1998), [Online Journal Article]: cited on 22 November 2004, http://www.livingreviews.org/lrr-1998-1. · Zbl 1023.83013
[163] Rovelli, C., “Black hole entropy from loop quantum gravity”, Phys. Rev. Lett., 14, 3288-3291, (1996). · Zbl 0955.83506
[164] Rovelli, C., “Loop quantum gravity and black hole physics”, Helv. Phys. Acta, 69, 582-611, (1996). · Zbl 0875.83048
[165] Sachs, R.K., and Bergmann, P.G., “Structure of particles in linearized gravitational theory”, Phys. Rev., 112, 674-680, (1958). · Zbl 0083.43001
[166] Senovilla, J.M.M., “On the existence of horizons in spacetimes with vanishing curvature invariants”, J. High Energy Phys., 11, 046, (2003). For a related online version see: J.M.M. Senovilla, (November, 2003), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/hep-th/0311172.
[167] Shapiro, S.L., and Teukolsky, S.A., “Collisions of relativistic clusters and the formation of black holes”, Phys. Rev. D, 45, 2739-2750, (1992). · Zbl 1232.83050
[168] Shoemaker, D.M., Huq, M.F., and Matzner, R.A., “Generic tracking of multiple apparent horizons with level flow”, Phys. Rev. D, 62, 124005-1-12, (2000). For a related online version see: D.M. Shoemaker, et al., (April, 2000), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0004062.
[169] Smarr, L.L., “Surface Geometry of Charged Rotating Black Holes”, Phys. Rev. D, 7, 289-295, (1973).
[170] Smolin, L., “Linking topological quantum field theory and nonperturbative quantum gravity”, J. Math. Phys., 36, 6417-6455, (1995). · Zbl 0856.58055
[171] Smoller, J.A., Wasserman, A.G., and Yau, S.T., “Existence of black hole solutions for the Einstein / Yang-Mills equations”, Commun. Math. Phys., 154, 377, (1993). · Zbl 0779.53056
[172] Straumann, N., and Zhou, Z.H., “Instability of a colored black hole solution”, Phys. Lett. B, 243, 33, (1990).
[173] Straumann, N., and Zhou, Z.H., “Instability of the Bartnik-McKinnon solution to the Einstein-Yang-Mills equations”, Phys. Lett. B, 237, 353, (1990).
[174] Strominger, A., and Vafa, C., “Microscopic origin of the Bekenstein-Hawking entropy”, Phys. Lett. B, 379, 99-104, (1996). For a related online version see: A. Strominger, et al., (January, 1996), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/hep-th/9601029. · Zbl 1376.83026
[175] Sudarsky, D., and Wald, R.M., “Extrema of mass, stationarity and staticity, and solutions to the Einstein-Yang-Mills equations”, Phys. Rev. D, 46, 1453-1474, (1992).
[176] Thiemann, T., “Introduction to modern canonical quantum general relativity”, (October, 2001), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0110034.
[177] Thornburg, J., “A fast apparent horizon finder for 3-dimensional Cartesian grids in numerical relativity”, Class. Quantum Grav., 21, 743-766, (2004). For a related online version see: J. Thornburg, (June, 2003), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/0306056. · Zbl 1045.83006
[178] Torii, T., and Maeda, K., “Black holes with non-Abelian hair and their thermodynamical properties”, Phys. Rev. D, 48, 1643-1651, (1993).
[179] Vaidya, P.C., “The gravitational field of a radiating star”, Proc. Indian Acad. Sci., Sect. A, 33, 264, (1951). · Zbl 0044.42202
[180] van den Broeck, C., personal communication to A. Ashtekar.
[181] Volkov, M.S., and Gal’tsov, D.V., “Gravitating non-Abelian solitons and black holes with Yang-Mills fields”, Phys. Rep., 319, 1, (1999).
[182] Wald, R.M., “The Thermodynamics of Black Holes”, Living Rev. Relativity, 4, (July, 2001), [Online Journal Article]: cited on 22 November 2004, http://www.livingreviews.org/lrr-2001-6. · Zbl 1060.83041
[183] Wald, R.M., “Black hole entropy is the Noether charge”, Phys. Rev. D, 48, R3427-R3431, (1993). · Zbl 0942.83512
[184] Wald, R.M., and Iyer, V., “Some properties of the Noether charge and a proposal for dynamical black hole entropy”, Phys. Rev. D, 50, 846-864, (1994).
[185] Wald, R.M., and Zoupas, A., “General definition of “conserved quantities” in general relativity and other theories of gravity“, <Emphasis Type=”Italic“>Phys. Rev. D, <Emphasis Type=”Bold“>61, 084027-1-16, (2000). For a related online version see: R.M. Wald, et al., (November, 1999), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9911095 <RefTarget Address=”http://arXiv.org/“ TargetType=”URL”/> . · Zbl 1136.83317
[186] Waugh, B., and Lake, K., “Double-null coordibates for the Vaidya spacetime”, Phys. Rev. D, 34, 2978-2984, (1986).
[187] Wheeler, JA; Keldysh, LV (ed.); Feinberg, VY (ed.), It from Bit (1992), New York, U.S.A.
[188] Witten, E., “A new proof of the positive energy theorem”, Commun. Math. Phys., 80, 381-402, (1981). · Zbl 1051.83532
[189] Wolfram Research, Inc., “Mathematica: The Way the World Calculates”, (2004), [Online HTML document]: cited on 22 November 2004, http://www.wolfram.com/products/mathematica/index.html.
[190] Yo, H.-J., Cook, J.N., Shapiro, S.L., and Baumgarte, T.W., “Quasi-equilibrium binary black hole initial data for dynamical evolutions”, Phys. Rev. D, 70, 084033-1-14, (2004).
[191] York, JW; Small, LL (ed.), Kinematics and Dynamics of General Relativity, 83-126 (1979), Cambridge, U.K.; New York, U.S.A. · Zbl 0418.58016
[192] York Jr, J.W., “Conformal ‘thin-sandwich’ data for the initial-value problem of general relativity”, Phys. Rev. Lett., 82, 1350-1353, (1999). For a related online version see: J.W. York Jr, (October, 1998), [Online Los Alamos Archive Preprint]: cited on 22 November 2004, http://arXiv.org/abs/gr-qc/9810051. · Zbl 0949.83011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.