×

Equation of state and Goldstone-mode effects of the three-dimensional O(2) model. (English) Zbl 1071.81558

Summary: We investigate numerically the three-dimensional \(O(2)\) model on \(8^3\)-\(160^3\) lattices as a function of the magnetic field \(H\). In the low-temperature phase we verify the \(H\)-dependence of the magnetization \(M\) induced by Goldstone modes and determine \(M\) for \(V\to\infty\) on the coexistence line both by extrapolation and by chiral perturbation theory. This enables us to calculate the corresponding critical amplitude. At \(T_c\) the critical scaling behaviour of the magnetization as a function of \(H\) is used to determine another critical amplitude. In both cases we find negative corrections-to-scaling. Our low-temperature results are well described by the perturbative form of the model’s magnetic equation of state, with coefficients determined nonperturbatively from our data. The \(O(2)\) scaling function for the magnetization is found to have a smaller slope than the one for the \(O(4)\) model.

MSC:

81T25 Quantum field theory on lattices
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Zinn-Justin, J., Precise determination of critical exponents and equation of state by field theory methods · Zbl 0925.82040
[2] Zinn-Justin, J., Quantum Field Theory and Critical Phenomena (1996), Clarendon Press: Clarendon Press Oxford · Zbl 0865.00014
[3] Anishetty, R.; Basu, R.; Hari Dass, N. D.; Sharatchandra, H. S., Int. J. Mod. Phys. A, 14, 3467 (1999)
[4] Dunlop, F.; Newman, C. M., Commun. Math. Phys., 44, 223 (1975)
[5] Engels, J.; Mendes, T., Nucl. Phys. B, 572, 289 (2000)
[6] Brézin, E.; Wallace, D. J.; Wilson, K. G., Phys. Rev. B, 7, 232 (1973)
[7] Wallace, D. J.; Zia, R. K.P., Phys. Rev. B, 12, 5340 (1975)
[8] Campostrini, M.; Pelissetto, A.; Rossi, P.; Vicari, E.
[9] Pisarsky, R.; Wilczek, F., Phys. Rev. D, 29, 338 (1984)
[10] Wilczek, F., J. Mod. Phys. A, 7, 3911 (1992)
[11] Rajagopal, K.; Wilczek, F., Nucl. Phys. B, 399, 395 (1993)
[12] Toussaint, D., Phys. Rev. D, 55, 362 (1997)
[13] Laermann, E., Nucl. Phys. B Proc. Suppl., 63A-C, 114 (1998)
[14] Aoki, S., Phys. Rev. D, 57, 3910 (1998)
[15] Bernard, C., Phys. Rev. D, 61, 054503 (2000)
[16] Ali Khan, A., Nucl. Phys. B Proc. Suppl., 83-84, 360 (2000)
[17] Talapov, A. L.; Blöte, H. W.J., J. Phys. A, 29, 5727 (1996)
[18] Tominaga, S.; Yoneyama, H., Phys. Rev. B, 51, 8243 (1995)
[19] Hasenbusch, M.; Török, T., J. Phys. A, 32, 6361 (1999)
[20] Griffiths, R. B., Phys. Rev., 158, 176 (1967)
[21] Dimitrović, I.; Hasenfratz, P.; Nager, J.; Niedermayer, F., Nucl. Phys. B, 350, 893 (1991)
[22] Ballesteros, H. G.; Fernández, L. A.; Martı́n-Mayor, V.; Muñoz Sudupe, A., Phys. Lett. B, 387, 125 (1996)
[23] Hasenfratz, P.; Leutwyler, H., Nucl. Phys. B, 343, 241 (1990)
[24] M. Campostrini, A. Pelissetto, P. Rossi, E. Vicari, private communication; M. Campostrini, A. Pelissetto, P. Rossi, E. Vicari, private communication
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.