×

Sensor fault diagnostics for a class of nonlinear systems using linear matrix inequalities. (English) Zbl 1069.93009

Summary: This paper develops a systematic approach to fault diagnostic system design for sensor health monitoring in Lipschitz nonlinear systems. The methodology applies to nonlinear systems with three or more sensors in which the state is observable through any one of the sensor measurements. Two major issues are addressed in the paper – observer design for the nonlinear system to ensure directional growth of residues for failure identification and use of linear matrix inequalities for explicit design of the observer gain. The use of the methodology is demonstrated through an illustrative example

MSC:

93B51 Design techniques (robust design, computer-aided design, etc.)
90B25 Reliability, availability, maintenance, inspection in operations research
15A39 Linear inequalities of matrices
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beard RV, Failure Accommodation in Linear Systems Through Self Re-organization, Dept. MVT-71–1, Man Vehicle Laboratory (1971)
[2] Boyd S, Linear Matrix Inequalities in System and Control Theory 15 (1994)
[3] Chen J, Proceedings of the 1998 IEEE ISIC/CIRA/ISAS Joint Conference (1998)
[4] DOI: 10.1109/TAES.1975.308108 · doi:10.1109/TAES.1975.308108
[5] DOI: 10.1109/TAC.1977.1101598 · doi:10.1109/TAC.1977.1101598
[6] Demetriou M, Proceedings of the 37th IEEE Conference on Decision and Control 1 pp pp. 1143–1148– (1998)
[7] Douglas RK, Fault Detection and Identification with Application to Advanced Vehicle Control Systems (1997)
[8] DOI: 10.1016/0005-1098(90)90018-D · Zbl 0713.93052 · doi:10.1016/0005-1098(90)90018-D
[9] Gertler J, IEEE Control Systems Magazine pp pp. 3–11– (1988)
[10] DOI: 10.1016/0005-1098(84)90098-0 · Zbl 0539.90037 · doi:10.1016/0005-1098(84)90098-0
[11] Jones HL, MIT (1973)
[12] DOI: 10.1016/S0005-1098(99)00067-9 · Zbl 0942.93010 · doi:10.1016/S0005-1098(99)00067-9
[13] Kitamura M, Transactions of the American Nuclear Society 34 pp 581– (1980)
[14] Krishnaswami V, Proceedings of the IFAC Symposium on Fault Detection, Supervision Safety Technical Processes pp pp. 317–322– (1994)
[15] DOI: 10.1016/0005-1098(71)90028-8 · doi:10.1016/0005-1098(71)90028-8
[16] Montgomery RC, AIAA 12th Aerospace Sciences Meeting (1974)
[17] Patton RJ, Fault Diagnosis in Dynamic Systems: Theory and Application (1989)
[18] DOI: 10.1109/9.661604 · Zbl 0905.93009 · doi:10.1109/9.661604
[19] DOI: 10.1109/87.865858 · doi:10.1109/87.865858
[20] Trunov AB, Proceedings of the 1999 American Control Conference 1 pp pp. 608–612– (1999)
[21] DOI: 10.1109/9.928602 · Zbl 1052.93023 · doi:10.1109/9.928602
[22] Vemuri AT, Proceedings of the 37th IEEE Conference on Decision and Control 5 pp pp. 2857–2861– (1998) · Zbl 0902.30006
[23] DOI: 10.1016/S0005-1098(96)00155-0 · Zbl 0874.93058 · doi:10.1016/S0005-1098(96)00155-0
[24] DOI: 10.1016/0005-1098(76)90041-8 · Zbl 0345.93067 · doi:10.1016/0005-1098(76)90041-8
[25] DOI: 10.1080/002071797223857 · Zbl 0887.93008 · doi:10.1080/002071797223857
[26] Zhang X, Proceedings of the American Control Conference pp pp. 1741–1746– (2001)
[27] DOI: 10.1109/9.995036 · Zbl 1125.93358 · doi:10.1109/9.995036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.