×

Blowup for the stochastic nonlinear Schrödinger equation with multiplicative noise. (English) Zbl 1068.35191

The authors study the influence of a multiplicative Gaussian noise, white in time and correlated in space, on the blowup phenomenon in the supercritical nonlinear Schrödinger equation. The authors prove that any sufficiently regular and localized deterministic initial data gives rise to a solution which blows up in arbitrarily small time with a positive probability.

MSC:

35R60 PDEs with randomness, stochastic partial differential equations
35Q55 NLS equations (nonlinear Schrödinger equations)
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H30 Applications of stochastic analysis (to PDEs, etc.)
60J60 Diffusion processes
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bang, O., Christiansen, P. L., If, F., Rasmussen, K. O. and Gaididei, Y. B. (1994). Temperature effects in a nonlinear model of monolayer Scheibe aggregates. Phys. Rev. E 49 4627–4636.
[2] Bang, O., Christiansen, P. L., If, F., Rasmussen K. O. and Gaididei, Y. B. (1995). White noise in the two-dimensional nonlinear Schrödinger equation. Appl. Anal. 57 3–15. · Zbl 0842.35111 · doi:10.1080/00036819508840335
[3] Brzezniak, Z. (1997). On stochastic convolution in Banach spaces, and applications. Stochastics Stochastics Rep. 61 245–295. · Zbl 0891.60056 · doi:10.1080/17442509708834122
[4] Brzezniak, Z. and Peszat, S. (1999). Space-time continuous solutions to SPDE’s driven by a homogeneous Wiener process. Studia Math. 137 261–299. · Zbl 0944.60075
[5] Cazenave, T. (1993). An Introduction to Nonlinear Schrödinger Equations . Textos de Métodos Matématicos 26, Instituto de Matématica-UFRJ Rio de Janeiro, Brazil.
[6] Da Prato, G. and Zabczyk, J. (1992). Stochastic Equations in Infinite Dimensions . Cambridge Univ. Press. · Zbl 0761.60052 · doi:10.1017/CBO9780511666223
[7] de Bouard, A. and Debussche, A. (1999). A stochastic nonlinear Schrödinger equation with multiplicative noise. Comm. Math. Phys. 205 161–181. · Zbl 0952.60061 · doi:10.1007/s002200050672
[8] de Bouard, A. and Debussche, A. (2002). On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrödinger equation. Probab. Theory Related Fields 123 76–96. · Zbl 1008.35074 · doi:10.1007/s004400100183
[9] de Bouard, A. and Debussche, A. (2002). Finite time blow-up in the additive supercritical stochastic nonlinear Schrödinger equation: The real noise case. Contemp. Math. 301 183–194. · Zbl 1017.35105
[10] de Bouard, A. and Debussche, A. (2003). The stochastic nonlinear Schrödinger equation in \(H^1\). Stochastic Anal. Appl. 21 97–126. · Zbl 1027.60065 · doi:10.1081/SAP-120017534
[11] de Bouard, A. and Debussche, A. (2004). A semi-discrete scheme for the stochastic nonlinear Schrödinger equation. Numer. Math. 96 733–770. · Zbl 1055.65008 · doi:10.1007/s00211-003-0494-5
[12] Debussche, A. and Di Menza, L. (2002). Numerical simulation of focusing stochastic nonlinear Schrödinger equations. Phys. D 162 131–154. · Zbl 0988.35156 · doi:10.1016/S0167-2789(01)00379-7
[13] Falkovich, G. E., Kolokolov, I., Lebedev, V. and Turitsyn, S. K. (2001). Statistics of soliton-bearing systems with additive noise. Phys. Rev. E 63 025601(R).
[14] Garnier, J. (1998). Asymptotic transmission of solitons through random media. SIAM J. Appl. Math. 58 1969–1995. · Zbl 0914.60077 · doi:10.1137/S0036139997318573
[15] Glassey, R. T. (1977). On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation. J. Math. Phys. 18 1794–1797. · Zbl 0372.35009 · doi:10.1063/1.523491
[16] Gyöngy, I. and Krylov, N. V. (1996). Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Related Fields 105 143–158. · Zbl 0847.60038 · doi:10.1007/BF01203833
[17] Kato, T. (1987). On nonlinear Schrödinger equation. Ann. Inst. H. Poincaré Phys. Théor. 46 113–129. · Zbl 0632.35038
[18] Konotop, V. and Vázquez, L. (1994). Nonlinear Random Waves . World Scientific, River Edge, NJ. · Zbl 1058.76500
[19] Millet, A. and Sanz-Solé, M. (1994). A simple proof of the support theorem for diffusion processes. Séminaire de Probabilités XXVIII. Lecture Notes in Math. 1583 36–48. Springer, Berlin. · Zbl 0807.60073
[20] Sulem, C. and Sulem, P. L. (1999). The Nonlinear Schrödinger Equation , Self-Focusing and Wave Collapse . Springer, New York. · Zbl 0928.35157
[21] Ueda, T. and Kath, W. L. (1992). Dynamics of optical pulses in randomly birefrengent fibers. Phys. D 55 166–181. · Zbl 0741.35082 · doi:10.1016/0167-2789(92)90195-S
[22] Zakharov, V. E. (1972). Collapse of Langmuir waves. Soviet Phys. JETP 35 908–914.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.