×

Micromechanical precision pressure sensor incorporating SAW delay lines. (English) Zbl 1064.74104

Summary: We have developed a wireless Surface Acoustic Wave (SAW) pressure sensor operating in the pressure range of 0 Pa to 250kPa. In order to minimize the temperature sensitivity, the pressure sensor is made of on an All-Quartz Package (AQP), which has been designed with the Finite Element Method. The package of the pressure sensor consists of a diaphragm and a cover, both made of conventional Y-cut quartz. A blind-hole was structured into the sensor cover. By attaching the cover and the diaphragm with an epoxy-adhesive, this blind-hole forms a closed cavity. The SAW element is a Reflective Delay Line (RDL), working at 434MHz. The RDL consists of ten reflectors and extends over the whole diaphragm. The pressure is determined by evaluating the change of the carrier phase shifts of the reflected impulses at the reflectors. We show that it is possible to minimize the temperature sensitivity and to achieve good linearity by proper positioning of the SAW reflectors. The measurements of the SAW pressure sensor show a deviation from linearity of less than \(\pm 0,7\%\). The temperature dependence is almost negligible in the range from \(-20^\circ\)C to \(100^\circ\)C. The objective of this paper is to provide a deeper insight into the behaviour of SAW propagation on pre-stressed substrates. To do so, we start with investigating the behavior of SAWs on stress-free substrates followed by an analysis of SAW propagation on pre-stressed substrates. Further, the requirements on suitable substrate materials for the AQP are specified. Finally, we take advantage of the method of differences to compensate for the temperature dependence of our pressure sensor.

MSC:

74J15 Surface waves in solid mechanics
74F15 Electromagnetic effects in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Auld, B. A.: Acoustic fields and waves in solids, vol. 1. New York: Wiley 1973.
[2] Morgan, D. P.: Surface-wave devices for signal processing. New York: Elsevier 1985.
[3] Sinh,, B. K., Tanski, W. J., Lukaszek, T., Ballato, A.: Influence of biasing stresses on the propagation of surface waves. J. Appl. Phys.57, 767-776 (1985). · doi:10.1063/1.334725
[4] Matthews, H.: Surface wave filters, New York: Wiley 1977.
[5] Nalamwar, A. L., Epstein, M.: Surflae acoustic waves in strained media. J. Appl. Phys.47, 43-48 (1976). · doi:10.1063/1.322293
[6] Meier, H., Russer, P.: Analysis of Leaky surface acoustic wave reflections. IEEE Ultrasonics Symposium, pp. 201-204 (1993).
[7] Kosinski, J. A.: The fundamental nature of acceleration sensitivity. IEEE Frequency Control Symposium, pp. 439-448 (1996).
[8] Baumhauer, J. C., Tiersten, H. F.: Nonlinear electroelastic equations for small fields superposed on a bias. J. Acoust. Soc. Am.45(4), 1017-1034 (1973). · Zbl 0274.73058 · doi:10.1121/1.1914312
[9] Ballandras, S.: Sensibilite des oscillateurs á quartz á ondes de surface aux contraintes et gradients thermiques. Dissertation. U.F.R. des Sciences et Techniques de l’Universitè de Fanche-Comtè, 1991.
[10] Auld, B. A.: Acoustic fields and waves in solids, vol. 2. New York: Wiley 1973.
[11] Courant, R., Hilbert, D.: Methoden der mathematischen Physik, vol. I., pp. 296-302. Berlin Heidelberg New York: Springer 1968. · Zbl 0161.29402
[12] Chai, J. F., Wu, T. T.: Determination of surface waves velocities in a prestressed anisotropic solid. NDT & E International29(5), 281-292 (1996). · doi:10.1016/S0963-8695(96)00031-X
[13] Chai, J. F., Wu, T. T.: Propagation of surface waves in a prestressed piezoelectric material. J. Acoust. Soc. Am.100 (4), 2112-2122 (1996). · doi:10.1121/1.417921
[14] Dias, J. F.: Physical sensor using SAW device.. Hewlett Packard Journal32 (12), 18-20 (1981).
[15] Meunier, P. L., Hartemann, P.: Cantilever-Beamed SAW Accelerometers. IEEE Ultrasonic Sympoosium, pp. 299-302 (1982).
[16] Scherr, H., Scholl, G.: Drucksensor unter Verwendung von mit akustischen Oberflächenwellen arbeitenden Elementen-OFW-Elemente. Europäisches Patent EU 97115947.0-2208.
[17] Taziev, R. M., Kolosovsky, E. A., Kozlov, A. S.: Extreme pressure-sensitive cuts for surface acoustic waves in ?-quartz. IEEE Frequency Control Symposium, pp. 345-351 (1994).
[18] Taziev, R. M., Kolosovsky, E. A., Kozlov, A. S.: Pressure-sensitive cuts for surface acoustic waves in ?-quartz. IEEE Frequency Control Symposium, pp. 845-849 (1995).
[19] Andres, D., Montress, G. K., Greer, J. A., Parker, T. E.: Vibration sensitivity of AQP SAW oscillators. IEEE Frequency Control Symposium, pp. 449-456 (1996).
[20] Bigler, E., Theobald, G., Hauden, D.: Stress-sensitivity mapping for surface acoustic waves on quartz. IEEE Frequency Control Symposium, pp. 57-62 (1989).
[21] Lord Rayleigh, J. W. S.: On waves propagated along the plane surface of an elastic solid. Proc. London Mathematical Society17, pp. 4-11 (1885). · JFM 17.0962.01 · doi:10.1112/plms/s1-17.1.4
[22] Scherr, H., Scholl, G., Seifert, F., Weigel, R.: Quartz pressure sensor based on SAW reflective delay line. IEEE Frequency Control Symposium, pp. 347-350 (1996).
[23] Pohl, A., Seifert, F.: Wirelessly interrogable surface acoustic wave sensors for vehicular applications. IEEE Trans. on Instrumentation and Measurement46, pp. 1031-1038 (1997). · doi:10.1109/19.650822
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.