×

Pattern formation in the presence of symmetries. (English) Zbl 1062.76511

Summary: We present a detailed theoretical study of pattern formation in planar continua with translational, rotational, and reflection symmetry. The theoretical predictions are tested in experiments on a quasi-two-dimensional reaction-diffusion system. Spatial patterns form in a chlorite-iodide-malonic acid reaction in a thin gel layer reactor that is sandwiched between two continuously refreshed reservoirs of reagents; thus, the system can be maintained indefinitely in a well-defined nonequilibrium state. This physical system satisfies, to a very good approximation, the Euclidean symmetries assumed in the theory. The theoretical analysis, developed in the amplitude equation formalism, is a spatiotemporal extension of the normal form. The analysis is identical to the Newell-Whitehead-Segel theory [A. C. Newell and J. A. Whitehead, J. Fluid Mech. 38, 279–303 (1969; Zbl 0187.25102); L. A. Segel, J. Fluid Mech. 38, 203–224 (1969; Zbl 0179.57501)] at the lowest order in perturbation, but has the advantage that it exactly preserves the Euclidean symmetries of the physical system. Our equations can be derived by a suitable modification of the perturbation expansion, as shown for two variations of the Swift-Hohenberg equation [J. B. Swift and P. C. Hohenberg, Phys. Rev. A 15, 319 ff (1969)]. Our analysis is complementary to the Cross-Newell approach [M. C. Cross and A. C. Newell, Phys. D 10, 299–328 (1984; Zbl 0592.76052)] to the study of pattern formation and is equivalent to it in the common domain of applicability. Our analysis yields a rotationally invariant generalization of the phase equation of Y. Pomeau and P. Manneville [J. Phys. Lett. 40, L609–L612 (1979)]. The theory predicts the existence of stable rhombic arrays with qualitative details that should be system-independent. Our experiments on the reaction-diffusion system yield patterns in good accord with the predictions. Finally, we consider consequences of resonances between the basic modes of a hexagonal pattern and compare the results of the analysis with experiments.

MSC:

76E99 Hydrodynamic stability
76V05 Reaction effects in flows
76M60 Symmetry analysis, Lie group and Lie algebra methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Q. Ouyang, Chaos 1 pp 411– (1991) · Zbl 0900.92171
[2] M. S. Heutmaker, Phys. Rev. A 35 pp 242– (1987)
[3] R. E. Rosensweig, J. Magn. Magn. Mater. 39 pp 127– (1983)
[4] D. Sornette, J. Phys. (Paris) 48 pp 151– (1987)
[5] C. Kooy, Philips Res. Rep. 15 pp 7– (1960)
[6] P. Molho, J. Magn. Magn. Mater. 54 pp 857– (1987)
[7] K. L. Babcock, Phys. Rev. A 40 pp 2022– (1989)
[8] A. Turing, Philos. Trans. R. Soc. London Ser. B 237 pp 37– (1952) · Zbl 1403.92034
[9] V. Castets, Phys. Rev. Lett. 64 pp 2953– (1990)
[10] P. De Kepper, Physica D 49 pp 161– (1991)
[11] Q. Ouyang, Nature 352 pp 610– (1991)
[12] I. Lengyel, Phys. Rev. Lett. 69 pp 2729– (1992)
[13] Z. Noszticzius, J. Phys. Chem. 96 pp 6303– (1992)
[14] Z. Noszticzius, Nature 329 pp 619– (1987)
[15] A. C. Newell, J. Fluid Mech. 38 pp 279– (1969) · Zbl 0187.25102
[16] L. A. Segel, J. Fluid Mech. 38 pp 203– (1969) · Zbl 0179.57501
[17] A. C. Newell, in: Lectures in the Sciences of Complexity (1989)
[18] P. Coullet, Phys. Rev. Lett. 58 pp 431– (1987)
[19] K. J. Lee, Science 261 pp 192– (1993)
[20] E. Moses, Phys. Rev. Lett. 57 pp 2018– (1986)
[21] P. Le Gal, Phys. Rev. Lett. 54 pp 2501– (1985)
[22] P. De Kepper, J. Phys. Chem. 94 pp 6525– (1990)
[23] Q. Ouyang, in: Chemical Waves and Patterns (1994)
[24] J. Guckenheimer, in: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (1983) · Zbl 0515.34001
[25] F. H. Busse, J. Fluid Mech. 91 pp 319– (1979)
[26] J. B. Swift, Phys. Rev. A 15 pp 319– (1977)
[27] R. Camassa, Phys. Rev. Lett. 76 pp 1661– (1993) · Zbl 0972.35521
[28] G. T. Mason, in: Many Particle Physics, 2nd ed. (1990)
[29] B. Dionne, Z. Angew. Math. Phys. 43 pp 36– (1992) · Zbl 0774.35055
[30] K. Kirchgässner, Math. Methods Appl. Sci. 1 pp 453– (1979) · Zbl 0442.76064
[31] M. C. Cross, Physica D 10 pp 299– (1984) · Zbl 0592.76052
[32] Y. Pomeau, J. Phys. Lett. 40 pp L609– (1979)
[33] E. Buzano, Philos. Trans. R. Soc. London Ser. A 308 pp 617– (1983) · Zbl 0622.76052
[34] S. Ciliberto, Phys. Rev. Lett. 65 pp 2370– (1990) · Zbl 1050.76538
[35] H. R. Brand, Physica D 23 pp 345– (1986) · Zbl 0621.76057
[36] G. H. Gunaratne, Phys. Rev. Lett. 71 pp 1367– (1993)
[37] H. R. Brand, Prog. Theor. Phys. Suppl. 99 pp 442– (1989)
[38] G. Sivashinsky, Annu. Rev. Fluid Mech. 15 pp 179– (1983)
[39] A. C. Newell, Annu. Rev. Fluid Mech. 25 pp 399– (1993)
[40] P. Manneville, in: Dissipative Structures and Weak Turbulence (1990) · Zbl 0714.76001
[41] J. E. Pearson, Chaos 2 pp 513– (1992) · Zbl 1055.92503
[42] Q. Ouyang, Chaos 3 pp 707– (1993)
[43] Q. Ouyang, J. Phys. Chem. 95 pp 351– (1991)
[44] V. Castets, Phys. Rev. Lett. 64 pp 2953– (1990)
[45] Q. Ouyang, J. Phys. Chem. 96 pp 6773– (1992)
[46] B. A. Malomed, Physica D 70 pp 357– (1994) · Zbl 0812.76029
[47] F. H. Busse, J. Math. Phys. 46 pp 140– (1967)
[48] F. H. Busse, J. Fluid Mech. 30 pp 625– (1967) · Zbl 0159.28202
[49] M. Field, Trans. Am. Math. Soc. 259 pp 185– (1980)
[50] M. Kruppa, SIAM J. Math. Anal. 21 pp 1253– (1990)
[51] V. Dufiet, J. Chem. Phys. 96 pp 664– (1992)
[52] V. Dufiet, Physica A 188 pp 158– (1992)
[53] W. H. Press, in: Numerical Recipes The Art of Scientific Computing (1988)
[54] Y. Tu, Phys. Rev. Lett. 69 pp 2515– (1992)
[55] B. A. Malomed, Phys. Rev. A 42 pp 7244– (1990)
[56] H. S. Greenside, Phys. Rev. Lett. 49 pp 726– (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.