×

Quadratic replica coupling in the Sherrington-Kirkpatrick mean field spin glass model. (English) Zbl 1060.82023

Summary: We develop a very simple method to study the high temperature, or equivalently high external field, behavior of the Sherrington-Kirkpatrick mean field spin glass model. The basic idea is to couple two different replicas with a quadratic term, trying to push out the two replica overlap from its replica symmetric value. In the case of zero external field, our results reproduce the well known validity of the annealed approximation, up to the known critical value for the temperature. In the case of nontrivial external field, we can prove the validity of the Sherrington-Kirkpatrick replica symmetric solution up to a line, which falls short of the Almeida-Thouless line, associated to the onset of the spontaneous replica symmetry breaking, in the Parisi ansatz. The main difference with the method, recently developed by Michel Talagrand, is that we employ a quadratic coupling, and not a linear one. The resulting flow equations, with respect to the parameters of the model, turn out to be very simple, and the parameter region, where the method works, can be easily found in explicit terms. As a straightforward application of cavity methods, we show also how to determine free energy and overlap fluctuations, in the region where replica symmetry has been shown to hold. It is a major open problem to give a rigorous mathematical treatment of the transition to replica symmetry breaking, necessarily present in the model.

MSC:

82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1103/PhysRevB.17.4384 · doi:10.1103/PhysRevB.17.4384
[2] DOI: 10.1103/PhysRevB.17.4384 · doi:10.1103/PhysRevB.17.4384
[3] Aizenman M., Commun. Math. Phys. 112 pp 3– (1987) · Zbl 1108.82312 · doi:10.1007/BF01217677
[4] Fröhlich J., Commun. Math. Phys. 112 pp 553– (1987) · doi:10.1007/BF01225372
[5] Shcherbina M., Helv. Phys. Acta 70 pp 838– (1997)
[6] Comets F., Commun. Math. Phys. 166 pp 549– (1995) · Zbl 0811.60098 · doi:10.1007/BF02099887
[7] Pastur L. A., J. Stat. Phys. 62 pp 1– (1991) · doi:10.1007/BF01020856
[8] Talagrand M., Probability Theory and Related Fields 110 pp 109– (1998) · Zbl 0909.60083 · doi:10.1007/s004400050147
[9] Guerra F., Int. J. Mod. Phys. B 10 pp 1675– (1996) · Zbl 1229.82097 · doi:10.1142/S0217979296000751
[10] Aizenman M., J. Stat. Phys. 92 pp 765– (1998) · Zbl 0963.82045 · doi:10.1023/A:1023080223894
[11] Ghirlanda S., J. Phys. A 31 pp 9149– (1998) · Zbl 0953.82037 · doi:10.1088/0305-4470/31/46/006
[12] Baffioni F., Eur. Phys. J. B 17 pp 439– (2000) · doi:10.1007/s100510070123
[13] Guerra F., Fields Inst. Commun. 30 pp 161– (2001)
[14] DOI: 10.1088/0305-4470/11/5/028 · doi:10.1088/0305-4470/11/5/028
[15] Marinari E., J. Stat. Phys. 98 pp 973– (2000) · Zbl 1015.82037 · doi:10.1023/A:1018607809852
[16] Newman C., Phys. Rev. Lett. 76 pp 515– (1996) · doi:10.1103/PhysRevLett.76.515
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.