×

Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model. (English) Zbl 1060.35146

The authors deal with a competitor-competitor-mutualist model with cross-diffusion. The main goal of this paper is to study the effects of the cross-diffusion pressure on the existence of non-constant positive steady-states. To this end the authors use the Leray-Schauder degree theory.

MSC:

35Q80 Applications of PDE in areas other than physics (MSC2000)
92C15 Developmental biology, pattern formation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] (Capasso, V.; Diekmann, O., Mathematics Inspired by Biology. Mathematics Inspired by Biology, Lecture Notes in Mathematics, vol. 1714 (1999), Springer-Verlag/CIME: Springer-Verlag/CIME Berlin/Florence) · Zbl 0930.00085
[2] Castets, V.; Dulos, E.; Boissonade, J.; DeKepper, P., Experimental evidence of a sustained Turing-type equilibrium chemical pattern, Phys. Rev. Lett., 64, 2953-2956 (1990)
[3] Chattopadhyay, J.; Tapaswi, P. K., Effect of cross-diffusion on pattern formation: a nonlinear analysis, Acta Appl. Math., 48, 1-12 (1997) · Zbl 0904.92011
[4] X.F. Chen, W.M. Ni, Y.W. Qi, M.X. Wang, A strongly coupled predator-prey system with non-monotonic functional response, preprint; X.F. Chen, W.M. Ni, Y.W. Qi, M.X. Wang, A strongly coupled predator-prey system with non-monotonic functional response, preprint
[5] X.F. Chen, W.M. Ni, Y.W. Qi, M.X. Wang, Steady states of a strongly coupled prey-predator model, preprint; X.F. Chen, W.M. Ni, Y.W. Qi, M.X. Wang, Steady states of a strongly coupled prey-predator model, preprint · Zbl 1144.35470
[6] Cross, M. C.; Hohenberg, P. S., Pattern formation outside of equilibrium, Rev. Modern Phys., 65, 851-1112 (1993) · Zbl 1371.37001
[7] Davidson, F. A.; Rynne, B. P., A priori bounds and global existence of solutions of the steady-state Sel’kov model, Proc. Roy. Soc. Edinburgh Sect. A, 130, 507-516 (2000) · Zbl 0960.35026
[8] Du, Y. H.; Lou, Y., Qualitative behaviour of positive solutions of a predator-prey model: effects of saturation, Proc. Roy. Soc. Edinburgh Sect. A, 131, 321-349 (2001) · Zbl 0980.35028
[9] Gierer, A.; Meinhardt, H., A theory of biological pattern formation, Kybernetik, 12, 30-39 (1972) · Zbl 1434.92013
[10] Ikeda, T.; Mimura, M., An interfacial approach to regional segregation of two competing species mediated by a predator, J. Math. Biol., 31, 215-240 (1993) · Zbl 0774.92023
[11] Iron, D.; Ward, M. J.; Wei, J. C., The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Phys. D, 150, 25-62 (2001) · Zbl 0983.35020
[12] Kan-on, Y., Existence and instability of Neumann layer solutions for a 3-component Lotka-Volterra model with diffusion, J. Math. Anal. Appl., 243, 357-372 (2000) · Zbl 0963.35012
[13] Lin, C. S.; Ni, W. M.; Takagi, I., Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations, 72, 1-27 (1988) · Zbl 0676.35030
[14] Lou, Y.; Martinez, S.; Ni, W. M., On 3×3 Lotka-Volterra competition systems with cross-diffusion, Discrete Contin. Dynam. Systems, 6, 175-190 (2000) · Zbl 1008.92035
[15] Lou, Y.; Ni, W. M., Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131, 79-131 (1996) · Zbl 0867.35032
[16] Lou, Y.; Ni, W. M., Diffusion vs cross-diffusion: an elliptic approach, J. Differential Equations, 154, 157-190 (1999) · Zbl 0934.35040
[17] Nirenberg, L., Topics in Nonlinear Functional Analysis (1974), Courant Institute of Mathematical Sciences: Courant Institute of Mathematical Sciences New York · Zbl 0286.47037
[18] Ouyang, Q.; Li, R.; Li, G.; Swinney, H. L., Dependence of Turing pattern wavelength on diffusion rate, Notices J. Chem. Phys., 102, 2551-2555 (1995)
[19] Pang, P. Y.H; Wang, M. X., Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion, Proc. London Math. Soc., 88, 135-157 (2004) · Zbl 1134.35373
[20] Pang, P. Y.H; Wang, M. X., Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 133, 919-942 (2003) · Zbl 1059.92056
[21] Rai, B.; Freedman, H. I.; Addicott, J. F., Analysis of three species models of mutualism in predator-prey and competitive systems, Math. Biosci., 65, 13-50 (1983) · Zbl 0532.92025
[22] Turing, A., The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. B, 237, 37-72 (1952) · Zbl 1403.92034
[23] Wang, M. X., Non-constant positive steady states of the Sel’kov model, J. Differential Equations, 190, 600-620 (2003) · Zbl 1163.35362
[24] Wang, X. F., Qualitative behavior of solutions of chemotactic diffusion systems: effects of motility and chemotaxis and dynamics, SIAM J. Math. Anal., 31, 535-560 (2000) · Zbl 0990.92001
[25] Wei, J. C.; Winter, M., Spikes for the Gierer-Meinhardt system in two dimensions: the strong coupling case, J. Differential Equations, 178, 478-518 (2002) · Zbl 1042.35005
[26] Zheng, S. N., A reaction-diffusion system of a competitor-competitor-mutualist model, J. Math. Anal. Appl., 124, 254-280 (1987) · Zbl 0658.35053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.