×

Polynomials with roots modulo every integer. (English) Zbl 1055.11523

Summary: Given a polynomial with integer coefficients, we calculate the density of the set of primes modulo which the polynomial has a root. We also give a simple criterion to decide whether or not the polynomial has a root modulo every non-zero integer.

MSC:

11R09 Polynomials (irreducibility, etc.)
11R45 Density theorems
11D61 Exponential Diophantine equations
11U05 Decidability (number-theoretic aspects)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] James Ax, Solving diophantine problems modulo every prime, Ann. of Math. (2) 85 (1967), 161 – 183. · Zbl 0239.10032 · doi:10.2307/1970438
[2] Eric Bach, Explicit bounds for primality testing and related problems, Math. Comp. 55 (1990), no. 191, 355 – 380. · Zbl 0701.11075
[3] M. Boshernitzan, On recurrence and spread in dynamical systems, preprint.
[4] D. Berend and J. E. Harmse, On polynomial-factorial and similar diophantine equations, preprint. · Zbl 1114.11029
[5] D. Berend and C. F. Osgood, On the equation \(P(x)=n!\) and a question of Erdos, J. Number Theory 42 (1992), 189–193. · Zbl 0762.11010
[6] Z. I. Borevich and I. R. Shafarevich, J. Number Theory, Academic Press, New York, 1966. · Zbl 0145.04902
[7] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory (Proceedings of an Instructional Conference, University of Sussex, 1965),, Academic Press and St Edmundsbury Press, Suffolk, 1990. · Zbl 0645.12001
[8] P. Erdos and R. Obláth, Über diophantische Gleichungen der Form \(n!=x^{p}\pm y^{p}\) und \(n!\pm m!=x^{p}\), Acta Szeged 8 (1937), 241–255. · JFM 63.0113.02
[9] M. Fried and G. Sacerdote, Solving Diophantine problems over all residue class fields of a number field and all finite fields, Ann. of Math. (2) 104 (1976), no. 2, 203 – 233. · Zbl 0376.02042 · doi:10.2307/1971045
[10] H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981. M. B. Porter Lectures. · Zbl 0459.28023
[11] Richard K. Guy, Unsolved problems in number theory, Unsolved Problems in Intuitive Mathematics, vol. 1, Springer-Verlag, New York-Berlin, 1981. Problem Books in Mathematics. · Zbl 0474.10001
[12] T. Kamae and M. Mendès France, van der Corput’s difference theorem, Israel J. Math. 31 (1978), no. 3-4, 335 – 342. · Zbl 0396.10040 · doi:10.1007/BF02761498
[13] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. · Zbl 0281.10001
[14] J. C. Lagarias, Sets of primes determined by systems of polynomial congruences, Illinois J. Math. 27 (1983), no. 2, 224 – 239. · Zbl 0507.12004
[15] J. C. Lagarias, H. L. Montgomery, and A. M. Odlyzko, A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math. 54 (1979), no. 3, 271 – 296. · Zbl 0401.12014 · doi:10.1007/BF01390234
[16] J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, Algebraic number fields: \?-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London, 1977, pp. 409 – 464. · Zbl 0362.12011
[17] Władysław Narkiewicz, Elementary and analytic theory of algebraic numbers, 2nd ed., Springer-Verlag, Berlin; PWN — Polish Scientific Publishers, Warsaw, 1990. · Zbl 0717.11045
[18] J. Osterlé, Versions effectives du théorème de Chebotarev sous l’hypothése de Riemann généralisé,, Soc. Math. France Astérisque 61 (1979), 165–167. · Zbl 0418.12005
[19] A. Sárkőzy, On difference sets of sequences of integers. I, Acta Math. Acad. Sci. Hungar. 31 (1978), no. 1 – 2, 125 – 149. · Zbl 0387.10033 · doi:10.1007/BF01896079
[20] A. Sárközy, On difference sets of sequences of integers. II, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 21 (1978), 45 – 53 (1979). A. Sárközy, On difference sets of sequences of integers. III, Acta Math. Acad. Sci. Hungar. 31 (1978), no. 3-4, 355 – 386. · Zbl 0387.10034 · doi:10.1007/BF01901984
[21] A. Sárközy, On difference sets of sequences of integers. II, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 21 (1978), 45 – 53 (1979). A. Sárközy, On difference sets of sequences of integers. III, Acta Math. Acad. Sci. Hungar. 31 (1978), no. 3-4, 355 – 386. · Zbl 0387.10034 · doi:10.1007/BF01901984
[22] Wolfgang M. Schmidt, Construction and estimation of bases in function fields, J. Number Theory 39 (1991), no. 2, 181 – 224. · Zbl 0764.11046 · doi:10.1016/0022-314X(91)90044-C
[23] Volker Schulze, Die Primteilerdichte von ganzzahligen Polynomen. I, J. Reine Angew. Math. 253 (1972), 175 – 185 (German). · Zbl 0244.12014 · doi:10.1515/crll.1972.253.175
[24] Volker Schulze, Die Primteilerdichte von ganzzahligen Polynomen. II, J. Reine Angew. Math. 256 (1972), 153 – 162 (German). · Zbl 0247.12011 · doi:10.1515/crll.1972.256.153
[25] Volker Schulze, Die Primteilerdichte von ganzzahligen Polynomen. III, J. Reine Angew. Math. 273 (1975), 144 – 145 (German). · Zbl 0302.12010 · doi:10.1515/crll.1975.273.144
[26] B.L. van der Waerden, Algebra I, Springer, 1971. · Zbl 0221.12001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.