×

Nonlinear dynamic analysis of shells with the triangular element TRIC. (English) Zbl 1054.74722

Summary: TRIC is a facet triangular shell element, which is based on the natural mode method. It has been shown that the TRIC shell element satisfies the individual element test and in the framework of the nonconsistent formulation the convergence requirements are fulfilled, while it has been proved to be very efficient in linear and nonlinear static problems. Moreover, another major advantage in the formulation of this element is the incorporation of the transverse shear deformations in a way that defies the shear-locking phenomenon. In this work the derivation of the consistent and lumped mass matrices of the TRIC element is presented so that it can be used in linear and nonlinear dynamic problems. Both translational and rotational inertia are included in the consistent mass matrix, which is conceived, using kinematical and geometrical arguments consistent with the assumed natural rigid body and straining modes of the element. All the kinematical and geometrical arguments that are invoked for the derivation of the consistent mass matrix are briefly presented. Moreover, two formulations of the lumped mass matrix of TRIC are derived. The first formulation is based entirely on geometrical considerations whereas the second is based on lumping the consistent mass matrix of TRIC. Finally, the element’s robustness and accuracy will be shown by applying it to properly selected benchmark examples of nonlinear shell dynamics, while its computational efficiency will be demonstrated by comparing the CPU performance of the element with the other available shell elements.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics

Software:

TRIC
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Argyris, J. H.; Tenek, L., Linear and geometrically bending of isotropic and multilayered composite plated by the natural mode method, Comput. Methods Appl. Mech. Engrg., 113, 207-251 (1994) · Zbl 0848.73058
[2] Argyris, J. H.; Tenek, L.; Olofsson, L., Nonlinear free vibrations of composite plates, Comput. Methods Appl. Mech. Engrg., 115, 1-51 (1994)
[3] Argyris, J. H.; Tenek, L.; Olofsson, L., TRIC: a simple but sophisticated 3-node triangular element based on 6 rigid body and 12 straining modes for fast computational simulations of arbitrary isotropic and laminated composite shells, Comput. Methods Appl. Mech. Engrg., 145, 11-85 (1997) · Zbl 0892.73051
[4] Argyris, J. H.; Tenek, L.; Papadrakakis, M.; Apostolopoulou, C., Postbuckling performance of the TRIC natural mode triangular element for isotropic and laminated composite shells, Comput. Methods Appl. Mech. Engrg., 166, 211-231 (1998) · Zbl 0945.74063
[5] Argyris, J. H.; Papadrakakis, M.; Apostolopoulou, C.; Koutsourelakis, S., The TRIC shell element: theoretical and numerical investigation, Comput. Methods Appl. Mech. Engrg., 182, 217-245 (2000) · Zbl 1003.74071
[6] Argyris, J. H.; Papadrakakis, M.; Karapitta, L., Elasto-plastic analysis of shells with the triangular element TRIC, Comput. Methods Appl. Mech. Engrg., 191, 3613-3636 (2002) · Zbl 1101.74361
[7] Argyris, J. H.; Papadrakakis, M.; Stefanou, G., Stochastic finite element analysis of shells, Comput. Methods Appl. Mech. Engrg., 191, 4781-4804 (2002) · Zbl 1019.74037
[8] F. Armero, E. Petöcz, A new class of conserving algorithms for dynamic contact problems, in: J.-A. Désidéri, P. LeTallec, E. Oñate, J. Périaux, E. Stein (Eds.), Numerical Methods in Engineering ’96, Proceedings of the second ECCOMAS Conference on Numerical Methods in Engineering, 9-13 September, Paris 1996, pp. 861-867; F. Armero, E. Petöcz, A new class of conserving algorithms for dynamic contact problems, in: J.-A. Désidéri, P. LeTallec, E. Oñate, J. Périaux, E. Stein (Eds.), Numerical Methods in Engineering ’96, Proceedings of the second ECCOMAS Conference on Numerical Methods in Engineering, 9-13 September, Paris 1996, pp. 861-867
[9] Armero, F.; Petöcz, E., Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems, Comput. Methods Appl. Mech. Engrg., 158, 269-300 (1998) · Zbl 0954.74055
[10] Armero, F.; Petöcz, E., A new dissipative time-stepping algorithm for frictional contact problems: Formulation and Analysis, Comput. Methods Appl. Mech. Engrg., 179, 151-178 (1999) · Zbl 0980.74044
[11] Batoz, J. L.; Bathe, K. J.; Ho, L. W., A study of three node triangular plate bending elements, Int. J. Numer. Methods Engrg., 15, 771-812 (1980)
[12] Belytschko, T.; Lin, J. I.; Tsay, C.-S., Explicit algorithms for the nonlinear dynamics of shells, Comput. Methods Appl. Mech. Engrg., 42, 225-251 (1984) · Zbl 0512.73073
[13] Bottasso, C. L.; Bauchau, O. A.; Choi, J. Y., An energy decaying scheme for nonlinear dynamics of shells, Comput. Methods Appl. Mech. Engrg., 191, 3099-3121 (2002) · Zbl 1011.74062
[14] Brank, B.; Tonello, N.; Briseghella, L.; Damjanić, F. B., On non-linear dynamics of elastic shells: Implementation of the energy-momentum conserving algorithm, Int. J. Numer. Methods Engrg., 42, 409-442 (1998) · Zbl 0926.74071
[15] Chung, J.; Hulbert, G. B., A time integration algorithm for structural dynamics with improved numerical dissipation: The Generalized-\(α\) Method, J. Appl. Mech., 371-375 (1993) · Zbl 0775.73337
[16] Crisfield, M. A.; Galvanetto, U.; Jelenić, G., Dynamics of 3-D co-rotational beams, Comput. Mech., 20, 507-519 (1997) · Zbl 0904.73076
[17] F.B. Damjanić, On non-linear dynamic thin shell analysis, in: S.R. Idelsohn, E. Oñate, E.N. Dvorkin (Eds.), Computational Mechanics, New Trends and Applications, Proceedings of the Fourth World Congress on Computational Mechanics, Buenos Aires, June 29-2 July, 1998; F.B. Damjanić, On non-linear dynamic thin shell analysis, in: S.R. Idelsohn, E. Oñate, E.N. Dvorkin (Eds.), Computational Mechanics, New Trends and Applications, Proceedings of the Fourth World Congress on Computational Mechanics, Buenos Aires, June 29-2 July, 1998
[18] Hinton, E.; Rock, T.; Zienkiewicz, O. C., A note on mass lumping and related processes in the Finite Element Method, Earthquake Engrg. Struct. Dyn., 4, 245-249 (1976)
[19] Hughes, T. J.R.; Caughey, T. K.; Liu, W. K., Finite-element methods for nonlinear elastodynamics which conserve energy, J. Appl. Mech., 45, 366-370 (1978) · Zbl 0392.73075
[20] Hilber, H. M.; Hughes, T. J.R.; Taylor, R. L., Improved numerical dissipation for the time integration algorithms in structural dynamics, Earthquake Engrg. Struct. Dyn., 5, 283-292 (1977)
[21] Lucia Karapitta, Nonlinear analysis, geometric and material, of shells with the natural triangular finite element TRIC, Postgraduate Thesis, National Technical University of Athens, 1999; Lucia Karapitta, Nonlinear analysis, geometric and material, of shells with the natural triangular finite element TRIC, Postgraduate Thesis, National Technical University of Athens, 1999
[22] Kuhl, D.; Ramm, E., Constraint Energy Momentum Algorithm and its application to non-linear dynamics of shells, Comput. Methods Appl. Mech. Engrg., 136, 293-315 (1996) · Zbl 0918.73327
[23] Kuhl, D.; Crisfield, M. A., Energy conserving and decaying algorithms in non-linear structural dynamics, Int. J. Numer. Methods Engrg., 45, 569-599 (1999) · Zbl 0946.74078
[24] Kuhl, D.; Ramm, E., Generalized Energy-Momentum Method for non-linear adaptive shell dynamics, Comput. Methods Appl. Mech. Engrg., 178, 343-366 (1999) · Zbl 0968.74030
[25] Newmark, N. N., A method of computation for structural dynamics, J. Engrg. Mech. Div., Proc. Am. Soc. Civil Engrs., 85, 67-94 (1959)
[26] Oñate, E.; Cendoya, P.; Miquel, J., Non-linear explicit dynamic analysis of shells using the BST rotation-free triangle, Engrg. Comput., 19, 662-706 (2002) · Zbl 1140.74557
[27] Sansour, C.; Wriggers, P.; Sansour, J., Nonlinear dynamics of shells: theory finite element formulation and integration schemes, Nonlinear Dyn., 13, 279-305 (1997) · Zbl 0877.73038
[28] Simo, J. C.; Fox, D. D.; Rifai, M. S., On a stress resultant geometrically exact shell model. Part VI: Conserving algorithms for nonlinear dynamics, Int. J. Numer. Methods Engrg., 34, 117-164 (1992) · Zbl 0760.73045
[29] Simo, J. C.; Tarnow, N., The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics, J. Appl. Math. Phys., 43, 757-792 (1992) · Zbl 0758.73001
[30] Simo, J. C.; Tarnow, N., A new energy and momentum conserving algorithm for the nonlinear dynamics of shells, Int. J. Numer. Methods Engrg., 37, 2527-2549 (1994) · Zbl 0808.73072
[31] Wood, W. L.; Bossak, M.; Zienkiewicz, O. C., An alpha modification of Newmark’s method, Int. J. Numer. Methods Engrg., 15, 1562-1566 (1981) · Zbl 0441.73106
[32] Zhong, H. G.; Crisfield, M. A., An energy-conserving co-rotational procedure for the dynamics of shell structures, Engrg. Comput., 15, 552-576 (1998) · Zbl 0936.74080
[33] Zienkiewicz, O. C.; Taylor, R. C., (The Finite Element Method, fifth ed., vol. 2 (2000), Butterworth-Heinemann) · Zbl 0991.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.