×

Nonlinear second-order multivalued boundary value problems. (English) Zbl 1052.34022

The authors study the following nonlinear multivalued boundary value problem \[ \varphi(x'(t))'\in A(x(t))+ F(t,x(t))\quad \text{ a.e. on}\,\,\, t\in[0,T], \]
\[ (\varphi(x'(0)),-\varphi(x'(T)))\in\xi(x(0),x(T)), \] where \(\varphi:{\mathbb R}^{N}\to {\mathbb R}^{N}\) is the function defined by \(\varphi (\xi):= \| \xi\| ^{p-2}\xi\), \(p \geq 2\), \(A:D(A) \subseteq \mathbb{R}^N\to 2^{{\mathbb R}^{N}}\) is a maximal monotone map, \(F:[0,T]\times {\mathbb R}^{N}\to 2^{{\mathbb R}^{N}}\) is a multivalued vector field and \(\xi:{\mathbb R}^{N}\times {\mathbb R}^{N}\to 2^{{\mathbb R}^{N}\times {\mathbb R}^{N}}\) is a maximal monotone map describing the boundary conditions. Using notions and techniques from nonlinear operator theory and multivalued analysis, some existence theorems for both convex and nonconvex problems are obtained under the hypothesis that \(F\) satisfies the well-known Hartman condition on a priori bound. Their framework is general and unifying and incorporates gradient systems, evolutionary variational inequalities, and the classical boundary value problems, namely the Dirichlet, the Neumann and the periodic problems. Finally, they present some special cases for illustrating the generality and unifying character of their results.

MSC:

34B15 Nonlinear boundary value problems for ordinary differential equations
34A60 Ordinary differential inclusions
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bader, R., A topological fixed point theory for evolution inclusions, Zeitshrift für Anal. Anwend, 20, 3-15 (2001) · Zbl 0985.34053
[2] Boccardo, L.; Drabek, P.; Giachetti, D.; Kucera, M., Generalizations of Fredholm alternative for nonlinear differential operators, Nonlinear Anal., 10, 1083-1103 (1986) · Zbl 0623.34031 · doi:10.1016/0362-546X(86)90091-X
[3] Dang, H.; Oppenheimer, S. F., Existence and uniqueness results for some nonlinear boundary value problems, J. Math. Anal. Appl., 198, 35-48 (1996) · Zbl 0855.34021 · doi:10.1006/jmaa.1996.0066
[4] De Blasi, F. S.; Górniewicz, L.; Pianigiani, G., Topological degree and periodic solutions of differential inclusions, Nonlinear Anal., 37, 217-245 (1999) · Zbl 0936.34009 · doi:10.1016/S0362-546X(98)00044-3
[5] De Blasi, F. S.; Pianigiani, G., The Baire category method in existence problem for a class of multivalued equations with nonconvex right hand side, Funkcialaj Ekvacioj, 28, 139-156 (1985) · Zbl 0584.34007
[6] De Blasi, F. S.; Pianigiani, G., Nonconvex valued differential inclusions in Banach spaces, J. Math. Anal. Appl., 157, 469-494 (1991) · Zbl 0728.34013 · doi:10.1016/0022-247X(91)90101-5
[7] De Blasi, F. S.; Pianigiani, G., On the density of extremal solutions of differential inclusions, Ann. Polonici Math., LVI, 133-142 (1992) · Zbl 0760.34019
[8] De Blasi, F. S.; Pianigiani, G., Topological properties of nonconvex differential inclusions, Nonlinear Anal., 20, 871-894 (1993) · Zbl 0774.34010 · doi:10.1016/0362-546X(93)90075-4
[9] De Coster, C., Pairs of positive solutions for the one-dimensionalp-Laplacian, Nonlinear Anal., 23, 669-681 (1994) · Zbl 0813.34021 · doi:10.1016/0362-546X(94)90245-3
[10] Dugundji, J.; Granas, A., Fixed point theory (1982), Warsaw: Polish Scientific Publishers, Warsaw · Zbl 0483.47038
[11] Erbe, L.; Krawcewicz, W., Nonlinear boundary value problems for differential inclusionsy ∈ F(t, y,ý), Annales Polonici Math., LIV, 195-226 (1991) · Zbl 0731.34078
[12] Frigon, M., Theoremes d’existence des solutions d’inclusion differentielles, 51-87 (1995), The Netherlands: Kluwer, Dordrecht, The Netherlands · Zbl 0834.34021
[13] Gaines, R.; Mawhin, J., Coincidence degree and nonlinear differential equations, Lecture Notes in Math. (1977), New Delhi: Springer Verlag, New Delhi · Zbl 0326.34021
[14] Guo, Z., Boundary value problems of a class of quasilinear ordinary differential equations, Diff. Integral Eqns, 6, 705-719 (1993) · Zbl 0784.34018
[15] Halidias, N.; Papageorgiou, N. S., Existence and relaxation results for nonlinear second order multivalued boundary value problems in ℝ^N, J. Diff. Eqns, 147, 123-154 (1998) · Zbl 0912.34020 · doi:10.1006/jdeq.1998.3439
[16] Hartman, P., On Boundary value problems for systems of ordinary nonlinear second order differential equations, Trans. AMS, 96, 493-509 (1960) · Zbl 0098.06101 · doi:10.2307/1993537
[17] Hartman, P., Ordinary differential equations (1964), New Delhi: Wiley, New Delhi · Zbl 0125.32102
[18] Hu, S.; Kandilakis, D.; Papageorgiou, N. S., Periodic solutions for nonconvex differential inclusions, Proc. AMS, 127, 89-94 (1999) · Zbl 0905.34036 · doi:10.1090/S0002-9939-99-04338-5
[19] Hu, S.; Papageorgiou, N. S., On the existence of periodic solutions for nonconvex-valued differential inclusions in ℝ^N, Proc. AMS, 123, 3043-3050 (1995) · Zbl 0851.34014 · doi:10.2307/2160658
[20] Hu, S.; Papageorgiou, N. S., Handbook of multivalued analysis. Volume I: Theory (1997), The Netherlands: Kluwer, Dordrecht, The Netherlands · Zbl 0887.47001
[21] Hu, S.; Papageorgiou, N. S., Handbook of multivalued analysis. Volume II: Applications (2000), The Netherlands: Kluwer, Dordrecht, The Netherlands · Zbl 0943.47037
[22] Kandilakis, D.; Papageorgiou, N. S., Existence theorem for nonlinear boundary value problems for second order differential inclusions, J. Diff. Eqns, 132, 107-125 (1996) · Zbl 0859.34011 · doi:10.1006/jdeq.1996.0173
[23] Kandilakis, D.; Papageorgiou, N. S., Neumann problem for a class of quasilinear differential equations, Atti. Sem. Mat. Fisico Univ. di Modena, 48, 1-15 (1999)
[24] Knobloch, W., On the existence of periodic solutions for second order vector differential equations, J. Diff. Eqns, 9, 67-85 (1971) · Zbl 0211.11801 · doi:10.1016/0022-0396(70)90154-3
[25] Marcus, M.; Mizel, V., Absolute continuity on tracks and mappings of Sobolev spaces, Arch. Rational Mech. Anal., 45, 294-320 (1972) · Zbl 0236.46033 · doi:10.1007/BF00251378
[26] Mawhin, J., Some boundary value problems for Hartman-type perturbations of the ordinary vectorp-Laplacian, Nonlinear Anal., 40, 497-503 (2000) · Zbl 0959.34014 · doi:10.1016/S0362-546X(00)85028-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.