×

An \(L^{p}\) analog to AAK theory for \(p\geq 2\). (English) Zbl 1050.47021

This paper deals with Hankel operators from the \(H^ s \) space of the unit circle into \({\overline H}^2_0 \), where \(1/p+1/s=1/2 \). Interpolating between the two natural cases \(p=2 \) and \(p=\infty \), the authors develop an \(L^ p \) analogue of the Adamyan-Arov-Kreĭn theory. In particular, they show that the distance to the set of operators of rank at most \(m \) is equal to the distance to the set of Hankel operators of rank at most \(m \). They also explain the relationship between the \(m\)-th singular value and the best approximation by meromorphic functions with at most \(m \) poles in the disk. Various applications to rational approximation are also given.
There are related papers by C. Le Merdy [Bull. Lond. Math. Soc. 25, 275–281 (1993; Zbl 0793.47024)] and by V. A. Prokhorov [J. Approximation Theory 116, 380–396 (2002; Zbl 1017.47024)].
For the extensive theory of Hankel operators and related topics, we refer the reader to the monographs by S. C. Power [“Hankel operators on Hilbert space” (Research Notes in Mathematics 64, Pitman) (1982; Zbl 0489.47011)] and J. R. Partington [“An introduction to Hankel operators” (London Mathematical Society Student Texts 13, Cambridge University Press) (1988; Zbl 0668.47022)], and especially to the recent one by V.V. Peller [“Hankel operators and their applications” (Springer Monographs in Mathematics, Springer Verlag, New York) (2003; Zbl 1030.47002)]. The latter contains a detailed account of the theory, including a summary of some results of the paper under review (see Chapter 4, Concluding Remarks on pp. 145–146).
The paper under review contains a wealth of material. The list of sections describes very well the content:
1. Introduction, 2. Analytic Approximation, 3. A Hankel Operator Approach, 4. Extremal Functions and Maximizing Vectors, 5. Meromorphic Approximation, 6. Interpolation Between \(p=2 \) and \(p=\infty \), 7. Some Ljusternik-Schnirelman (Lyusternik-Shnirel’man) Theory, 8. AAK Theory in \(L^ p \) for \(p\geq 2 \), 9. Critical Points, 10. Nonhermitian Orthogonality.
The bibliography contains more than 60 items and is rather complete. Regarding those results in the paper that deal with the best approximation, it might be worth also adding as a reference the well-known monograph by H. Shapiro [Topics in approximation theory, Lecture Notes in Mathematics, 187, Springer-Verlag (1971; Zbl 0213.08501)].

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
30H05 Spaces of bounded analytic functions of one complex variable
46E15 Banach spaces of continuous, differentiable or analytic functions
41A20 Approximation by rational functions
41A50 Best approximation, Chebyshev systems
47-02 Research exposition (monographs, survey articles) pertaining to operator theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adamjan, V. M.; Arov, D. Z.; Krein, M. G., Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem, Math. USSR Sb., 15, 31-73 (1971) · Zbl 0248.47019
[2] Alpay, D.; Baratchart, L.; Gombani, A., On the differential structure of matrix-valued rational inner functions, Operator Theory, 73, 30-66 (1994) · Zbl 0810.93015
[3] Andersson, J.-E., Best rational approximation to Markov functions, J. Approximation Theory, 76, 219-232 (1994) · Zbl 0796.41014
[4] Bagby, T., The modulus of a plane condenser, J. Math. Mech., 17, 315-329 (1967) · Zbl 0163.35204
[5] Bagby, T., On interpolation by rational functions, Duke Math. J., 36, 95-104 (1969) · Zbl 0223.30049
[6] Baratchart, L., On the topological structure of inner functions and its use in identification, Analysis of Controlled Dynamical Systems, Lyon, France, 1990. Analysis of Controlled Dynamical Systems, Lyon, France, 1990, Progress in Systems and Control Theory, 8 (1990), Birkhäuser: Birkhäuser Basel, p. 51-59 · Zbl 0791.93017
[7] L. Baratchart, R. Küstner, F. Mandrea, and, V. Totik, Zero Distribution via Orthogonality, INRIA research report.; L. Baratchart, R. Küstner, F. Mandrea, and, V. Totik, Zero Distribution via Orthogonality, INRIA research report.
[8] Baratchart, L.; Saff, E. B.; Prokhorov, V., Best meromorphic approximation of Markov functions on the unit circle, Found. Constructive Math., 1, 385-416 (2001) · Zbl 1053.41019
[9] Baratchart, L.; Saff, E. B.; Wielonsky, F., A criterion for uniqueness of a critical points in \(H^2\) rational approximation, J. Anal. Math., 70, 225-266 (1996) · Zbl 0870.41013
[10] Baratchart, L.; Stahl, H.; Wielonsky, F., Asymptotic uniqueness of best rational approximants of given degree to Markov functions in \(L^2\) of the circle, Constructive Approx., 17, 103-138 (2001) · Zbl 0983.30018
[11] Baratchart, L.; Wielonsky, F., Rational approximation in the real Hardy space \(H^2\) and Stieltjes integrals: a uniqueness theorem, Constructive Approx., 9, 1-21 (1993) · Zbl 0769.30024
[12] Bennett, C.; Sharpley, C., Interpolation of Operators (1988), Academic Press: Academic Press San Diego · Zbl 0647.46057
[13] Bonvalot, L., Moyenne géométrique des fonctions des espaces de Hardy et polynômes concentrés aux bas degrés (1986), Université de Paris 7
[14] Braess, D., Nonlinear Approximation Theory, Series in Computational Mathematics (1986), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0656.41001
[15] Brezis, H., Analyse Fonctionnelle (1987), Masson: Masson Paris
[16] Cioranescu, I., Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems (1990), Kluwer Academic: Kluwer Academic Dordrecht, Norwell · Zbl 0712.47043
[17] Cotlar, M.; Sadosky, C., Abstract, weighted, and multidimensional AAK theorems, and the singular numbers of Sarason commutants, Integral Equations Operator Theory, 17, 169-201 (1993) · Zbl 0804.47026
[18] Courant, R.; Hilbert, D., Methods of Mathematical Physics I (1953), Wiley: Wiley New York · Zbl 0729.00007
[19] Duren, P. L., Theory of \(H^p\)-spaces (1970), Academic Press: Academic Press San Diego · Zbl 0215.20203
[20] Erohin, V. D., On the best approximation of analytic functions by rational functions with free poles, Dokl. Akad. Nauk SSSR, 128, 29-32 (1959) · Zbl 0124.28704
[21] Fisher, S. D.; Micchelli, C. A., The \(n\)-widths of sets of analytic functions, Duke Math. J., 47, 789-801 (1980) · Zbl 0451.30032
[22] Gantmacher, F. R., Théorie des matrices I: Théorie générale (1966), Dunod: Dunod Paris · Zbl 0136.00410
[23] Garnett, J. B., Bounded Analytic Functions (1981), Academic Press: Academic Press San Diego · Zbl 0469.30024
[24] Gonchar, A. A.; Rakhmanov, E. A., Equilibrium distributions and the degree of rational approximation of analytic functions, Math. USSR Sb., 176, 306-352 (1989) · Zbl 0645.30026
[25] Guillemin, V.; Pollack, A., Differential Topology (1974), Prentice-Hall: Prentice-Hall Englewood Cliffs · Zbl 0361.57001
[26] Hannan, E. J.; Deistler, M., The Statistical Theory of Linear Systems (1988), Wiley: Wiley New York · Zbl 0641.93002
[27] Hayashi, E.; Trefethen, L. N.; Gutknecht, M. H., The CF table, Constructive Approximation, 6, 195-223 (1990) · Zbl 0698.30039
[28] Hoffman, K., Banach Spaces of Analytic Functions (1988), Dover: Dover New York · Zbl 0117.34001
[29] Kavian, O., Introduction à la théorie des points critiques. Introduction à la théorie des points critiques, Mathématiques et Applications, 13 (1991), Springer-Verlag: Springer-Verlag Berlin/New York
[30] Khavinson, S. Ya, On some extremal problems in the theory of analytic functions, Amer. Math. Soc. Transl., 32, 139-154 (1963) · Zbl 0149.03301
[31] Khavinson, S. Ya, Foundations of the theory of extremal problems for bounded analytic functions and various generalizations of them, Amer. Math. Soc. Transl., 127, 1-57 (1986) · Zbl 0585.30002
[32] Koosis, P., Introduction to \(H_p\)-spaces (1980), Cambridge Univ. Press: Cambridge Univ. Press Cambridge
[33] Lang, S., Differential Manifolds (1972), Addison-Wesley: Addison-Wesley Reading
[34] Levin, A. L., The distribution of poles of rational functions of best approximation and related questions, Math. USSR Sb., 9, 267-274 (1969) · Zbl 0198.10502
[35] Macintyre, A. J.; Rogosinski, W. W., Extremum problems in the theory of analytic functions, Acta Math., 82, 275-325 (1950) · Zbl 0036.04503
[36] Le Merdy, C., The Adamjan-Arov-Krein theorem on \(H^p\) spaces, (2⩽\(p\)⩽∞) and on the disk algebra, Bull. London Math. Soc., 25, 275-281 (1993) · Zbl 0793.47024
[37] Nehari, Z., On bounded bilinear forms, Ann. Math., 65, 153-162 (1957) · Zbl 0077.10605
[38] Nikolskii, N. K., Treatise on the Shift Operator. Treatise on the Shift Operator, Grundlehren der Math. Wissenschaften, 273 (1986), Springer-Verlag: Springer-Verlag Berlin/New York
[39] Papadimitrakis, M., Continuity of the operator of best uniform approximation by bounded analytic functions, Bull. London Math. Soc., 25, 44-48 (1993) · Zbl 0812.30014
[40] Parfenov, O. G., Estimates of the singular numbers of a Carleson operator, Math USSR Sb., 59, 497-514 (1988) · Zbl 0665.47019
[41] Partington, J. R., An Introduction to Hankel Operators (1988), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0668.47022
[42] Peeters, R.; Hanzon, B., Research report (1997)
[43] Peller, V. V., Hankel operators and continuity properties of the operators of best approximation, Leningrad Math. J., 2, 139-160 (1991) · Zbl 0767.47010
[44] Peller, V. V., Boundedness properties of the operators of best approximation by analytic and meromorphic functions, Ark. Mat., 30, 331-343 (1992) · Zbl 0770.30034
[45] Peller, V. V.; Khrushchev, S. V., Hankel operators, best approximations, and stationary Gaussian processes, Russ. Math. Surv., 37, 61-144 (1982) · Zbl 0505.60043
[46] Peller, V. V.; Young, N. J., Superoptimal analytic approximations of matrix functions, J. Funct. Anal., 78, 300-343 (1994) · Zbl 0808.47011
[47] Power, S. C., Hankel Operators on Hilbert Space (1982), Pitman: Pitman London · Zbl 0489.47011
[48] Prokhorov, V. A., Rational approximation of analytic functions, Russ. Acad. Sci., Sb., Math., 78, 139-164 (1994) · Zbl 0818.41012
[49] V. A. Prokhorov, On \(L^p\); V. A. Prokhorov, On \(L^p\)
[50] Regalia, P. A., Adaptative IIR Filtering in Signal Processing and Control (1995), Marcel Dekker: Marcel Dekker New York · Zbl 0864.93012
[51] Rogosinski, W. W.; Shapiro, H. S., On certain extremum problems for analytic functions, Acta Math., 90, 287-318 (1953) · Zbl 0051.05604
[52] Rosenblum, M.; Rovnyak, J., Hardy Classes and Operator Theory (1985), Oxford Univ. Press: Oxford Univ. Press Oxford · Zbl 0586.47020
[53] Rudin, W., Real and Complex Analysis (1982), Mc Graw-Hill: Mc Graw-Hill New York
[54] Saff, E. B.; Totik, V., Logarithmic Potentials with External Fields. Logarithmic Potentials with External Fields, Grundlehren der Math. Wiss., 316 (1997), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0881.31001
[55] Sarason, D., Algebras of functions on the unit circle, Bull. Amer. Math. Soc., 79, 286-299 (1973) · Zbl 0257.46079
[56] Seyfert, F., Problèmes extrémaux dans les espaces de Hardy, application l’identification de filtres hyperfréquences à cavités couplées (1998), ENSMP
[57] Söderström, T.; Stoica, P., System Identification (1987), Prentice-Hall: Prentice-Hall Englewood Cliffs · Zbl 0714.93056
[58] Stahl, H., The convergence of Padé approximants to functions with branch points, J. Approx. Theory, 91, 139-204 (1997) · Zbl 0896.41009
[59] Treil, S.; Volberg, A., A fixed-point approach to Nehari’s problem and its applications, Operator Theory, 71, 165-186 (1994) · Zbl 0818.47026
[60] Voichick, M.; Zalcman, L., Inner and outer functions on riemann surfaces, Proc. Amer. Math. Soc., 16, 1200-1204 (1965) · Zbl 0147.11503
[61] Walsh, J. L., Interpolation and Approximation by Rational Functions in the Complex Domain (1962), Amer. Math. Soc: Amer. Math. Soc Providence · Zbl 0013.05903
[62] Young, N. J., An Introduction to Hilbert Space (1988), Cambridge Univ. Press: Cambridge Univ. Press Cambridge
[63] Zeidler, E., Nonlinear Functional Analysis and Its Applications III (1985), Springer-Verlag: Springer-Verlag Berlin/New York
[64] Zeidler, E., Nonlinear Functional Analysis and Its Applications II/A (1990), Springer-Verlag: Springer-Verlag Berlin/New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.