×

The closure diagram for nilpotent orbits of the split real form of \(E_8\). (English) Zbl 1050.17006

The closure diagrams for adjoint nilpotent orbits in noncompact real forms of the exceptional simple complex Lie algebras were determined by the author in a series of papers [J. Lie Theory 10, 213–220 and 491–510 (2000; Zbl 0945.22004 and Zbl 0974.17010), ibid. 11, 381–413 (2001; Zbl 1049.17006); Represent. Theory 5, 17–42 and 284–316 (2001; Zbl 1031.17004 and Zbl 1050.17007)], except for the split real form of \(E_8\).
This paper handles this last case, it can be viewed as a continuation of the author’s paper [Asian J. Math. 5, 561–584 (2001; Zbl 1033.17012)]. Concretely, let \({\mathfrak O}_1\) and \({\mathfrak O}_2\) be adjoint nilpotent orbits in a real semisimple Lie algebra. Write \({\mathfrak O}_1\geq {\mathfrak O}_2\) if \({\mathfrak O}_2\) is contained in the closure of \({\mathfrak O}_1\). This defines a partial order on the set of such orbits, known as the closure ordering. This paper determines this order for the split real form of the simple complex Lie algebra \(E_8\) and presents a comprehensive list of simple representatives of these orbits.

MSC:

17B25 Exceptional (super)algebras
17B40 Automorphisms, derivations, other operators for Lie algebras and super algebras

Software:

Maple; LiE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. Barbasch and M.R. Sepanski: “Closure ordering and the Kostant-Sekiguchi correspondence”, Proc. Amer. Math. Soc., Vol. 126, (1998), pp. 311-317. http://dx.doi.org/10.1090/S0002-9939-98-04090-8; · Zbl 0896.22004
[2] W.M. Beynon and N. Spaltenstein: “Green functions of finite Chevalley groups of type E n (n=6, 7, 8)”, J. Algebra, Vol. 88, (1984), pp. 584-614. http://dx.doi.org/10.1016/0021-8693(84)90084-X; · Zbl 0539.20025
[3] N. Bourbaki: Groupes et algèbres de Lie, Chap. 7 et 8, Hermann, Paris, 1975.; · Zbl 0329.17002
[4] R.W. Carter: “Conjugacy classes in the Weyl group”, Comp. Math., Vol. 25, (1972), pp. 1-59.; · Zbl 0254.17005
[5] B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, S.M. Watt: Maple V Language reference Manual, Springer-Verlag, New York, 1991, xv+267 pp.; · Zbl 0758.68038
[6] D.H. Collingwood and W.M. McGovern: Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, New York, 1993.; · Zbl 0972.17008
[7] D.Ž. Đoković: “Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers”, J. Algebra, Vol. 112, (1988), pp. 503-524. http://dx.doi.org/10.1016/0021-8693(88)90104-4; · Zbl 0639.17005
[8] D.Ž. Đoković: “Explicit Cayley triples in real forms of G 2, F 4, and E 6”, Pacific. J. Math., Vol. 184, (1998), pp. 231-255.; · Zbl 1040.17004
[9] D.Ž. Đoković: “Explicit Cayley triples in real forms of E 8”, Pacific J. Math.“, Vol. 194, (2000), pp. 57-82. http://dx.doi.org/10.2140/pjm.2000.194.57<pub-id pub-id-type=”doi”>10.2140/pjm.2000.194.57; · Zbl 1013.22003
[10] D.Ž. Đoković: “The closure diagrams for nilpotent orbits of real forms of F 4 and G 2”, J. Lie Theory, Vol. 10, (2000), pp. 491-510.; · Zbl 0974.17010
[11] D.Ž. Đoković: “The closure diagrams for nilpotent orbits of real forms of E 6”, J. Lie Theory, 11, (2001), pp. 381-413.; · Zbl 1049.17006
[12] D.Ž. Đoković: “The closure diagrams for nilpotent orbits of the real forms EVI and EVII of E 7”, Represent. Theory, Vol. 5, (2001), pp. 17-42. http://dx.doi.org/10.1090/S1088-4165-01-00112-1; · Zbl 1031.17004
[13] D.Ž. Đoković: “The closure diagram for nilpotent orbits of the split real forms of E 7”, Represent. Theory, Vol. 5, (2001), pp. 284-316. http://dx.doi.org/10.1090/S1088-4165-01-00124-8; · Zbl 1050.17007
[14] D.Ž. Đoković: “The closure diagram for nilpotent orbits of the real form EIX of E 8”, Asian J. Math., Vol. 5, (2001), pp. 561-584.; · Zbl 1033.17012
[15] K. Mizuno: “The conjugate classes of unipotent elements of the Chevalley groups E 7 and E 8”, Tokyo J. Math., Vol. 3, (1980), pp. 391-461. http://dx.doi.org/10.3836/tjm/1270473003; · Zbl 0454.20046
[16] A. Mortajine: Classification des espaces préhomogènes de type parabolique réguliers et de leurs invariants relatifs, Hermann, Paris, 1991.; · Zbl 0717.22007
[17] M. Sato and T. Kimura: “A classification of irreducible prehomogeneous vector spaces and their relative invariants”, Nagoya Math. J., Vol. 65, (1977), pp. 1-155.; · Zbl 0321.14030
[18] M. Sato, T. Shintani, M. Muro: “Theory of prehomogeneous vector spaces (algebraic part)”, Nagoya Math. J., Vol. 120, (1990), pp. 1-34.; · Zbl 0715.22014
[19] M.A.A. van Leeuwen, A.M. Cohen, B. Lisser: LiE, version 2.1, a software package for Lie group theoretic computations, Computer Algebra Group of CWI, Amsterdam, The Netherlands.;
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.