×

Simulated annealing for complex portfolio selection problems. (English) Zbl 1046.91057

Summary: This paper describes the application of a simulated annealing approach to the solution of a complex portfolio selection model. The model is a mixed integer quadratic programming problem which arises when Markowitz’ classical mean–variance model is enriched with additional realistic constraints. Exact optimization algorithms run into difficulties in this framework and this motivates the investigation of heuristic techniques. Computational experiments indicate that the approach is promising for this class of problems.

MSC:

91G10 Portfolio theory
90C59 Approximation methods and heuristics in mathematical programming
90C20 Quadratic programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aarts, E.; Lenstra, J. K., Local Search in Combinatorial Optimization (1997), John Wiley & Sons: John Wiley & Sons New York · Zbl 0869.00019
[2] Bienstock, D., Computational study of a family of mixed-integer quadratic programming problems, Mathematical Programming, 74, 121-140 (1996) · Zbl 0855.90090
[3] F. Catanas, On a neighbourhood structure for portfolio selection problems, Working paper, Centre for Quantitative Finance, Imperial College, London, 1998; F. Catanas, On a neighbourhood structure for portfolio selection problems, Working paper, Centre for Quantitative Finance, Imperial College, London, 1998
[4] Černý, V., Thermodynamical approach to the travelling salesman problem: An efficient simulation algorithm, Journal of Optimization Theory and Applications, 45, 41-51 (1985) · Zbl 0534.90091
[5] Chang, T. J.; Meade, N.; Beasley, J. E.; Sharaiha, Y. M., Heuristics for cardinality constrained portfolio optimisation, Computers and Operations Research, 27, 1271-1302 (2000) · Zbl 1032.91074
[6] Computational Science Education Project, Mathematical Optimization, Electronic book at http://csep1.phy.ornl.gov/mo/mo.html; Computational Science Education Project, Mathematical Optimization, Electronic book at http://csep1.phy.ornl.gov/mo/mo.html
[7] Constantinides, G. M.; Malliaris, A. G., Portfolio theory, (Jarrow, R. A.; Maksimovic, V.; Ziemba, W. T., Finance (1995), Elsevier Science: Elsevier Science Amsterdam), 1-30
[8] Dahl, H.; Meeraus, A.; Zenios, S. A., Some financial optimization models: I. Risk management, (Zenios, S. A., Financial Optimization (1996), Cambridge University Press: Cambridge University Press Cambridge), 3-36
[9] Dekkers, A.; Aarts, E., Global optimization and simulated annealing, Mathematical Programming, 50, 367-393 (1991) · Zbl 0753.90060
[10] Dembo, R. S.; Mulvey, J. M.; Zenios, S. A., Large-scale nonlinear network models and their application, Operations Research, 37, 353-372 (1989) · Zbl 0669.90044
[11] Elton, E. J.; Gruber, M. J., Modern Portfolio Theory and Investment Analysis (1991), John Wiley: John Wiley New York
[12] F. Hamza, J. Janssen, Extension réaliste pour la sélection de portefeuilles en présence des coûts de transaction, Working paper, Université Libre de Bruxelles, 1997; F. Hamza, J. Janssen, Extension réaliste pour la sélection de portefeuilles en présence des coûts de transaction, Working paper, Université Libre de Bruxelles, 1997
[13] Johnson, D. S.; Aragon, C. R.; McGeoch, L. A.; Scevon, C., Optimization by simulated annealing: An experimental evaluation. Part I, Graph partitioning, Operations Research, 37, 865-892 (1989) · Zbl 0698.90065
[14] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, P. M., Optimization by simulated annealing, Science, 220, 671-680 (1983) · Zbl 1225.90162
[15] Konno, H.; Yamazaki, H., Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Science, 37, 519-531 (1991)
[16] Levy, H.; Sarnat, M., Portfolio and Investment Selection: Theory and Practice (1984), Prentice-Hall International: Prentice-Hall International Englewood Cliffs, NJ
[17] Loraschi, A.; Tettamanzi, A.; Tomassini, M.; Verda, P., Distributed genetic algorithms with an application to portfolio selection problems, (Pearson, D. W.; Steele, N. C.; Albrecht, R. F., Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms ICANNGA95 (1995), Springer-Verlag: Springer-Verlag Berlin), 384-387
[18] Lovász, L.; Simonovits, M., Random walks in a convex body and an improved volume algorithm, Random Structures and Algorithms, 4, 359-412 (1993) · Zbl 0788.60087
[19] Luenbeger, D. G., Investment Science (1998), Oxford University Press: Oxford University Press Oxford
[20] Markowitz, H. M., Portfolio selection, Journal of Finance, 7, 77-91 (1952)
[21] Osman, I. H.; Laporte, G., Metaheuristics: A bibliography, Annals of Operations Research, 63, 513-623 (1996) · Zbl 0849.90097
[22] Perold, A. F., Large-scale portfolio optimization, Management Science, 30, 1143-1160 (1984) · Zbl 0548.90008
[23] Pirlot, M., General local search heuristics in combinatorial optimization: A tutorial, Belgian Journal of Operations Research, Statistics and Computer Science, 32, 7-68 (1992) · Zbl 0768.90062
[24] Takehara, H., An interior point algorithm for large scale portfolio optimization, Annals of Operations Research, 45, 373-386 (1993) · Zbl 0785.90019
[25] van Laarhoven, P. J.M.; Aarts, E. H., Simulated Annealing: Theory and Applications (1988), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0643.65028
[26] Wolfe, P., The simplex method for quadratic programming, Econometrica, 27, 382-398 (1959) · Zbl 0103.37603
[27] Zabinsky, Z. B.; Smith, R. L.; McDonald, J. F.; Romeijn, H. E.; Kaufman, D. E., Improving hit-and-run for global optimization, Journal of Global Optimization, 3, 171-192 (1993) · Zbl 0784.90084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.