×

Construction of best Bregman approximations in reflexive Banach spaces. (English) Zbl 1040.41016

Let \(X\) be a reflexive Banach space and let \(f: X \to (-\infty,\infty]\) be a lower semicontinuous convex function which is Gâteaux differentiable on \(\operatorname{int} \operatorname{dom}f \neq \emptyset\). Assume further that \(\partial f\) is both locally bounded and single-valued on its domain and \((\partial f)^{-1}\) is locally bounded on its domain, \(f\) is strictly convex on every convex subset of \(\operatorname{dom} \partial f\). The Bregman distance associated with \(f\) is the function \(D: X \times X \to [0,\infty]\) defined by \(D(x,y) = f(x)-f(y)-(x-y,\nabla f(y))\) if \(y \in \operatorname{int} \operatorname{dom}f\) and as \(\infty\) otherwise. Let \(x_0 \in \operatorname{int} \operatorname{dom}f\), \((\operatorname{int} \operatorname{dom} f)\cap \bigcap S_i \neq \emptyset,\) and \(S=\overline{\operatorname{dom}}f \cap \bigcap S_i\) where \(\{S_i\}_{i \in I}\) is a countable family of closed and convex subsets of \(X\).
In this paper the authors present a method for finding the best Bregman approximation to \(x_0\) from \(S\). A renorming result that the authors attribute to Professor J. D. Vanderwerff, saying that any reflexive space can be equivalently renormed so that in the new norm the space is strictly convex, Gâteaux smooth but fails to have the Kadec-Klee property will also be of interest to a general reader.

MSC:

41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
41A29 Approximation with constraints
41A50 Best approximation, Chebyshev systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Heinz H. Bauschke, Jonathan M. Borwein, and Patrick L. Combettes, Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, Commun. Contemp. Math. 3 (2001), no. 4, 615 – 647. · Zbl 1032.49025 · doi:10.1142/S0219199701000524
[2] H. H. Bauschke, J. M. Borwein, and P. L. Combettes, Bregman monotone optimization algorithms, SIAM J. Control Optim., to appear. · Zbl 1049.90053
[3] H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces, Math. Oper. Res., 26 (2001), 248-264. · Zbl 1082.65058
[4] Heinz H. Bauschke and Adrian S. Lewis, Dykstra’s algorithm with Bregman projections: a convergence proof, Optimization 48 (2000), no. 4, 409 – 427. · Zbl 0992.90052 · doi:10.1080/02331930008844513
[5] J. M. Borwein and M. Fabián, On convex functions having points of Gateaux differentiability which are not points of Fréchet differentiability, Canad. J. Math. 45 (1993), no. 6, 1121 – 1134. · Zbl 0793.46021 · doi:10.4153/CJM-1993-062-8
[6] James P. Boyle and Richard L. Dykstra, A method for finding projections onto the intersection of convex sets in Hilbert spaces, Advances in order restricted statistical inference (Iowa City, Iowa, 1985) Lect. Notes Stat., vol. 37, Springer, Berlin, 1986, pp. 28 – 47. · Zbl 0603.49024 · doi:10.1007/978-1-4613-9940-7_3
[7] Lev M. Bregman, Yair Censor, and Simeon Reich, Dykstra’s algorithm as the nonlinear extension of Bregman’s optimization method, J. Convex Anal. 6 (1999), no. 2, 319 – 333. · Zbl 0960.90067
[8] L. M. Bregman, Y. Censor, S. Reich, and Y. Zepkowitz-Malachi, Finding the projection of a point onto the intersection of convex sets via projections onto halfspaces, preprint, 2002. · Zbl 1045.90045
[9] Dan Butnariu and Alfredo N. Iusem, Totally convex functions for fixed points computation and infinite dimensional optimization, Applied Optimization, vol. 40, Kluwer Academic Publishers, Dordrecht, 2000. · Zbl 0960.90092
[10] D. Butnariu, A. Iusem, and C. Zalinescu, On uniform convexity, total convexity and the convergence of the proximal point and outer Bregman projection algorithms in Banach spaces, J. Convex Anal., to appear. · Zbl 1091.90078
[11] Yair Censor and Simeon Reich, The Dykstra algorithm with Bregman projections, Commun. Appl. Anal. 2 (1998), no. 3, 407 – 419. · Zbl 0897.90155
[12] Yair Censor and Stavros A. Zenios, Parallel optimization, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 1997. Theory, algorithms, and applications; With a foreword by George B. Dantzig. · Zbl 0945.90064
[13] Patrick L. Combettes, Strong convergence of block-iterative outer approximation methods for convex optimization, SIAM J. Control Optim. 38 (2000), no. 2, 538 – 565. · Zbl 1032.90023 · doi:10.1137/S036301299732626X
[14] Frank Deutsch, Best approximation in inner product spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 7, Springer-Verlag, New York, 2001. · Zbl 0980.41025
[15] Robert Deville, Gilles Godefroy, and Václav Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. · Zbl 0782.46019
[16] T. Dumont, Décomposition par Projection de Certains Problèmes aux Limites Elliptiques non Linéaires, Thèse, Université Claude Bernard, Lyon, France, 1978.
[17] R. Gárciga-Otero, A strongly convergent hybrid proximal point method in Banach spaces, conference talk (presented at the IV Brazilian Workshop on Continuous Optimization, Rio de Janeiro, July 15, 2002) reporting on a forthcoming paper with B. F. Svaiter.
[18] Y. Haugazeau, Sur les Inéquations Variationnelles et la Minimisation de Fonctionnelles Convexes, Thèse, Université de Paris, Paris, France, 1968.
[19] G. Pierra, Eclatement de contraintes en parallèle pour la minimisation d’une forme quadratique, in Lecture Notes in Computer Science, Vol. 41, Springer-Verlag, New York, 1976, 200-218. · Zbl 0346.49032
[20] E. Resmerita, On total convexity, Bregman projections and stability in Banach spaces, preprint, 2002.
[21] Ivan Singer, Best approximation in normed linear spaces by elements of linear subspaces, Translated from the Romanian by Radu Georgescu. Die Grundlehren der mathematischen Wissenschaften, Band 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York-Berlin, 1970. · Zbl 0197.38601
[22] M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Program. 87 (2000), no. 1, Ser. A, 189 – 202. · Zbl 0971.90062
[23] J. D. Vanderwerff, personal communication, 2002.
[24] C. Zălinescu, On uniformly convex functions, J. Math. Anal. Appl. 95 (1983), no. 2, 344 – 374. · Zbl 0519.49010 · doi:10.1016/0022-247X(83)90112-9
[25] Eberhard Zeidler, Nonlinear functional analysis and its applications. III, Springer-Verlag, New York, 1985. Variational methods and optimization; Translated from the German by Leo F. Boron. · Zbl 0583.47051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.