×

Convergence dynamics of hybrid bidirectional associative memory neural networks with distributed delays. (English) Zbl 1038.92001

Summary: The characteristics of the convergence dynamics of hybrid bidirectional associative memory neural networks with distributed transmission delays are studied. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the Lyapunov functionals are constructed and the generalized Halanay-type inequalities are employed to derive the delay-independent sufficient conditions under which the networks converge exponentially to the equilibria associated with temporally uniform external inputs. Some examples are given to illustrate the correctness of our results.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kosko, B., IEEE Trans. Systems Man Cybernet., 18, 49 (1988)
[2] Kosko, B., Appl. Opt., 26, 4947 (1987)
[3] Kosko, B., IEEE Trans. Neural Networks, 1, 44 (1990)
[4] Kosko, B., Neural Networks and Fuzzy Systems—A Dynamical System Approach to Machine Intelligence (1992), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0755.94024
[5] Gopalsamy, K.; He, X. Z., IEEE Trans. Neural Networks, 5, 998 (1994)
[6] Liao, X. F.; Liu, G. Y.; Yu, J. B., J. Electron., 19, 4, 439 (1997), (in Chinese)
[7] Liao, X. F.; Yu, J. B., Int. J. Circ. Theory Appl., 26, 3, 219 (1998)
[8] Rao, V. S.H.; Phaneendra, Bh. R.M.; Prameela, V., Differential Equation Dynamical Systems, 4, 453 (1996)
[9] Rao, V. S.H.; Phaneendra, Bh. R.M., Neural Networks, 12, 455 (1999)
[10] Rao, V. S.H.; Phaneendra, Bh. R.M., Nonlinear Dynamics and Systems Theory, 2, 79 (2002) · Zbl 1044.34032
[11] Rao, V. S.H.; Rao, P. R.S., Int. J. Neural Systems, 12, 15 (2002)
[12] Rao, V. S.H.; Rao, P. R.S., New Millennium Special Issue on Neural Networks and Neurocomputing, Part-II. New Millennium Special Issue on Neural Networks and Neurocomputing, Part-II, Differential Equations Dynamical Systems, 10, 3 (2002)
[13] Zhang, J. Y.; Yang, Y. R., Int. J. Theor. Appl., 29, 185 (2001)
[14] Cao, J.; Wang, L., IEEE Trans. Neural Networks, 13, 2, 457 (2002)
[15] Zhao, H., Phys. Lett. A, 297, 182 (2002)
[16] Sun, C.; Zhang, K.; Fei, S.; Feng, C., Phys. Lett. A, 298, 122 (2002)
[17] Tank, D. W.; Hopfield, J. J., Proc. Natl. Acad. Sci. USA, 84, 1896 (1987)
[18] Liao, X. F.; Wu, Z. F.; Yu, J. B., J. Comput. Appl. Math., 143, 29 (2002)
[19] Liao, X. F.; Yu, J. B., IEEE Trans. Neural Networks, 9, 1042 (1998)
[20] Liao, X. F.; Wong, K.-W.; Yu, J. B., Int. J. Bifur. Chaos, 11, 1853 (2001)
[21] Liao, X. F.; Chen, G.; Sanchez, E. N., IEEE Trans. CAS-I, 49, 7, 1033 (2002)
[22] Liao, X. F.; Chen, G.; Sanchez, E. N., Neural Networks, 15, 855 (2002)
[23] Liao, X. F.; Yu, J. B.; Chen, G., Int. J. Circ. Theory Appl., 30, 519 (2002)
[24] Gopalsamy, K., Stability and Oscillations in Delay Differential Equations of Population Dynamics (1992), Kluwer Academic: Kluwer Academic Dordrecht · Zbl 0752.34039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.