×

A variational splitting integrator for quantum molecular dynamics. (English) Zbl 1037.81634

Summary: A numerical time integration method for the nonlinear partial differential equations of the multiconfiguration time-dependent Hartree (MCTDH) approach to quantum molecular dynamics is proposed and analyzed. The method is based on a splitting of the quantum Hamiltonian, though not on the level of the MCTDH equations but of the underlying variational principle. The integrator suffers no step size restriction caused by the unbounded separable part of the Hamiltonian, in contrast to direct time discretizations of the MCTDH equations.

MSC:

81V55 Molecular physics
81-08 Computational methods for problems pertaining to quantum theory

Software:

MCTDH
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beck, M. H.; Jäckle, A.; Worth, G. A.; Meyer, H.-D., The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets, Phys. Reports, 324, 1-105 (2000)
[2] Beck, M. H.; Meyer, H.-D., An efficient and robust integration scheme for the equations of motion of the multiconfiguration time-dependent Hartree (MCTDH) method, Z. Phys. D, 42, 113-129 (1997)
[3] Benettin, G.; Cherubini, A. M.; Fassò, F., A changing-chart symplectic algorithm for rigid bodies and other Hamiltonian systems on manifolds, SIAM J. Sci. Comput., 23, 1189-1203 (2001) · Zbl 1002.65136
[4] Dirac, P. A.M., Note on exchange phenomena in the Thomas atom, Proc. Cambridge Philos. Soc., 26, 376-385 (1930) · JFM 56.0751.04
[5] Frenkel, J., Wave Mechanics, Advanced General Theory (1934), Clarendon Press: Clarendon Press Oxford · Zbl 0013.08702
[6] Hairer, E.; Lubich, Ch.; Wanner, G., Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations (2002), Springer: Springer Berlin · Zbl 0994.65135
[7] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving Ordinary Differential Equations I. Nonstiff Problems (1993), Springer: Springer Berlin · Zbl 0789.65048
[8] Hochbruck, M.; Lubich, Ch., On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34, 1911-1925 (1997) · Zbl 0888.65032
[9] Jahnke, T.; Lubich, Ch., Error bounds for exponential operator splittings, BIT, 40, 735-744 (2000) · Zbl 0972.65061
[10] T. Klett, Diplomarbeit, Fakultät für Mathematik und Physik, Univ. Tübingen, 2003, in preparation; T. Klett, Diplomarbeit, Fakultät für Mathematik und Physik, Univ. Tübingen, 2003, in preparation
[11] R. Kozlov, A. Kværnø, B. Owren, The behaviour of the local error in splitting methods applied to stiff problems, Report Numerics No. 1/2003, NTNU Trondheim, 2003; R. Kozlov, A. Kværnø, B. Owren, The behaviour of the local error in splitting methods applied to stiff problems, Report Numerics No. 1/2003, NTNU Trondheim, 2003 · Zbl 1053.65061
[12] Ch. Lubich, On variational approximations in quantum molecular dynamics, submitted for publication, 2003; Ch. Lubich, On variational approximations in quantum molecular dynamics, submitted for publication, 2003
[13] McLachlan, A. D., A variational solution of the time-dependent Schrödinger equation, Mol. Phys., 8, 39-44 (1964)
[14] Meyer, H.-D.; Manthe, U.; Cederbaum, L. S., The multi-configurational time-dependent Hartree approach, Chem. Phys. Lett., 165, 73-78 (1990)
[15] Park, T. J.; Light, J. C., Unitary quantum time evolution by iterative Lanczos reduction, J. Chem. Phys., 85, 5870-5876 (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.