×

Topological stability of contact structures in dimension 3. (Stabilité topologique des structures de contact en dimension 3.) (French) Zbl 1034.53087

It has been known for some time that a contact structure \(\xi_1\) on a closed manifold \(V\) that is sufficiently \(C^1\)-close to a contact structure \(\xi_0\) is actually isotopic to it. This follows from the result of J. Gray that a path of contact structures \((\xi_t)_{t\in [0,1]}\) is of the form \(\xi_t = \phi_{t\ast}(\xi_0)\) for some isotopy \((\phi_t)_{t\in [0,1]}\) of \(V\) with \(\phi_0 = \text{id}_V\). In this paper, the author shows that the contact structure \(\xi_1\) is also isotopic to the contact structure \(\xi_0\) when \(V\) is a closed \(3\)-manifold and \(\xi_1\) is only \(C^0\)-close to \(\xi_0\). He also points out that the same result can not be true in dimensions higher than three. In fact, for overtwisted contact structures, the \(3\)-manifold result can be proved from Eliashberg’s classification of overtwisted structures on \(3\)-manifolds. As the author notes, his result is therefore akin to a local version of this classification – a local version that also holds for tight contact structures.

MSC:

53D35 Global theory of symplectic and contact manifolds
53D10 Contact manifolds (general theory)
57R17 Symplectic and contact topology in high or arbitrary dimension
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Daniel Bennequin, Entrelacements et équations de Pfaff , Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982), Astérisque, vol. 107, Soc. Math. France, Paris, 1983, pp. 87-161. · Zbl 0573.58022
[2] Y. Eliashberg, Classification of overtwisted contact structures on \(3\)-manifolds , Invent. Math. 98 (1989), no. 3, 623-637. · Zbl 0684.57012 · doi:10.1007/BF01393840
[3] Yakov Eliashberg, Contact \(3\)-manifolds twenty years since J. Martinet’s work , Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1-2, 165-192. · Zbl 0756.53017 · doi:10.5802/aif.1288
[4] Yakov M. Eliashberg and William P. Thurston, Confoliations , University Lecture Series, vol. 13, American Mathematical Society, Providence, RI, 1998. · Zbl 0893.53001
[5] Emmanuel Giroux, Topologie de contact en dimension \(3\) (autour des travaux de Yakov Eliashberg) , Astérisque (1993), no. 216, Exp. No. 760, 3, 7-33. · Zbl 0793.53037
[6] Emmanuel Giroux, Une structure de contact, même tendue, est plus ou moins tordue , Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 6, 697-705. · Zbl 0819.53018
[7] John W. Gray, Some global properties of contact structures , Ann. of Math. (2) 69 (1959), 421-450. JSTOR: · Zbl 0092.39301 · doi:10.2307/1970192
[8] Yutaka Kanda, The classification of tight contact structures on the \(3\)-torus , Comm. Anal. Geom. 5 (1997), no. 3, 413-438. · Zbl 0899.53028
[9] J. Martinet, Formes de contact sur les variétés de dimension \(3\) , Proceedings of Liverpool Singularities Symposium, II (1969/1970), Springer, Berlin, 1971, 142-163. Lecture Notes in Math., Vol. 209. · Zbl 0215.23003
[10] Sol Schwartzman, Asymptotic cycles , Ann. of Math. (2) 66 (1957), 270-284. JSTOR: · Zbl 0207.22603 · doi:10.2307/1969999
[11] William Thurston, The theory of foliations of codimension greater than one , Comment. Math. Helv. 49 (1974), 214-231. · Zbl 0295.57013 · doi:10.1007/BF02566730
[12] William P. Thurston, A norm for the homology of \(3\)-manifolds , Mem. Amer. Math. Soc. 59 (1986), no. 339, i-vi and 99-130. · Zbl 0585.57006
[13] Fernando Varela, Sur une propriété de \(C^0\)-stabilité des formes de contact en dimension \(3\) , C. R. Acad. Sci. Paris Sér. A-B 280 (1975), Aii, A1225-A1227. · Zbl 0308.53034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.