×

Multilinear Calderón-Zygmund theory. (English) Zbl 1032.42020

In this paper the authors consider a systematic treatment of multilinear Calderón-Zygmund operators introduced earlier in the papers of Coifman and Meyer and of M. Lacey and C. Thiele [Ann. Math. (2) 146, 693-724 (1997; Zbl 0914.46034); ibid. 149, 475-496 (1999; Zbl 0934.42012)]. The first main result reads as follows: Let \(m\)-linear operators be \(T: [{\mathcal S}(\mathbb{R}^n)]^m\to{\mathcal S}'(\mathbb{R}^n)\) for which there is a function \(K\) defined away from the diagonal \(x= y_1=\cdots= y_m\) in \((\mathbb{R}^n)^{m+1}\) satisfying \[ |K(y_0,y_1,\dots, y_m)|\leq {c_{n,m}A\over (\sum^m_{k,l=0}|y_k- y_l|)^{nm}} \] and \[ |K(y_0,\dots, y_j,\dots,y_m)- K(y_0,\dots, y_j',\dots, y_m)|\leq {c_{n,m}A|y_j- y_j'|^\varepsilon\over (\sum^m_{k,l=0}|y_k- y_l|)^{nm+ \varepsilon}}, \] whenever \(0\leq j\leq m\) and \(|y_j- y_j'|\leq{1\over 2}\max_{0\leq k\leq m}|y_j- y_k|\). Let \(q_j\in [1,\infty)\) be given numbers with \(1/q= \sum^m_{j=1} 1/q_j\). Suppose that \(T\) maps \(L^{q_1,1}\times\cdots\times L^{q_m,1}\) into \(L^{q,\infty}\) if \(q> 1\) or \(L^1\) if \(q= 1\). Then for any \(p_j\in [1,\infty]\) such that \(1/m\leq p< \infty\), \(T\) extends to a bounded map from \(L^{p_1}\times\cdots\times L^{p_m}\) into \(L^p\) if all \(p_j> 1\) and into \(L^{p,\infty}\) if some \(p_j= 1\). If some \(p_k= \infty\), \(L^{p_k}\) should be replaced by \(L^\infty_c\). Moreover, \(T\) extends to a bounded map from \(L^\infty\times\cdots\times L^\infty\) to BMO. Next, the authors obtain the version of the multilinear T1 theorem by G. David and J.-L. Journé [Ann. Math. (2) 120, 371-397 (1984; Zbl 0567.47025)]. It is proved that if \(T(e_{\xi_1},\dots, e_{\xi_m})\) and \(T^{*j}(e_{\xi_1},\dots, e_{\xi_m})\) \((\xi_1,\dots, \xi_m\in \mathbb{R}^n\), \(1\leq j\leq m)\) are bounded subsets of BMO, then \(T\) has a bounded extension from \(L^{q_1}\times\cdots\times L^{q_m}\) into \(L^q\) if \(1< q,q_j<\infty\). Here \(j\)th transpose \(T^{*j}\) of \(T\) is defined via \[ \langle T^{*j}(f_1,\dots, f_m), h\rangle= \langle T(f_1,\dots, f_{j-1}, h,f_{j+1},\dots, f_m),f_j\rangle \] for all \(f_1,\dots, f_m\), \(g\) in \({\mathcal S}(\mathbb{R}^n)\). This multilinear Calderón-Zygmund theory is applied to obtain some new continuity results for multilinear translation invariant operators, multlinear pseudodifferential operators, and multilinear multipliers.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Benedek, A.; Calderón, A.; Panzone, R., Convolution operators on Banach-space valued functions, Proc. Natl. Acad. Sci. U.S.A., 48, 356-365 (1962) · Zbl 0103.33402
[2] Bourdaud, G., Une algèbre maximale d’opérateurs pseudodifferentiels, Comm. Partial Differential Equations, 13, 1059-1083 (1988) · Zbl 0659.35115
[3] Calderón, A.; Zygmund, A., On the existence of certain singular integrals, Acta Math., 88, 85-139 (1952) · Zbl 0047.10201
[4] Calderón, A.; Zygmund, A., On singular integrals, Amer. J. Math., 78, 289-309 (1956) · Zbl 0072.11501
[5] Christ, M.; Journé, J-L., Polynomial growth estimates for multilinear singular integral operators, Acta Math., 159, 51-80 (1987) · Zbl 0645.42017
[6] Coifman, R. R.; Meyer, Y., On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 212, 315-331 (1975) · Zbl 0324.44005
[7] Coifman, R. R.; Meyer, Y., Commutateurs d’ intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble), 28, 177-202 (1978) · Zbl 0368.47031
[8] Coifman, R. R.; Meyer, Y., Au-delà des opérateurs pseudo-différentiels, Asterisk, 57 (1978) · Zbl 0483.35082
[9] Coifman, R. R.; Meyer, Y., Non-linear harmonic analysis, operator theory; and P.D.E, (Stein, E. M., Beijing Lectures in Harmonic Analysis. Beijing Lectures in Harmonic Analysis, Annals of Math. Studies, 112 (1986), Princeton Univ. Press: Princeton Univ. Press Princeton) · Zbl 0623.47052
[10] David, G.; Journé, J.-L., A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math., 120, 371-397 (1984) · Zbl 0567.47025
[11] Grafakos, L.; Kalton, N., Some remarks on multilinear maps and interpolation, Math. Ann., 319, 151-180 (2001) · Zbl 0982.46018
[12] L. Grafakos, and, X. Li, Uniform bounds for the bilinear Hilbert transforms, I, submitted for publication.; L. Grafakos, and, X. Li, Uniform bounds for the bilinear Hilbert transforms, I, submitted for publication. · Zbl 1071.44004
[13] Hörmander, L., Estimates for translation invariant operators in \(L^p\) spaces, Acta Math., 104, 93-140 (1960) · Zbl 0093.11402
[14] Hörmander, L., The Analysis of Linear Partial Differential Operators I (1990), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York
[15] Janson, S., On interpolation of multilinear operators, Function Spaces and Applications (Lund, 1986). Function Spaces and Applications (Lund, 1986), Lecture Notes in Math., 1302 (1988), Springer-Verlag: Springer-Verlag Berlin/New York
[16] Kenig, C.; Stein, E. M., Multilinear estimates and fractional integration, Math. Res. Lett., 6, 1-15 (1999) · Zbl 0952.42005
[17] Lacey, M. T.; Thiele, C. M., \(L^p\) bounds for the bilinear Hilbert transform, \(2<p\)<∞, Ann. Math., 146, 693-724 (1997) · Zbl 0914.46034
[18] Lacey, M. T.; Thiele, C. M., On Calderón’s conjecture, Ann. Math., 149, 475-496 (1999) · Zbl 0934.42012
[19] X. Li, Uniform bounds for the bilinear Hilbert transforms, II, submitted for publication.; X. Li, Uniform bounds for the bilinear Hilbert transforms, II, submitted for publication.
[20] Meyer, Y.; Coifman, R. R., Wavelets: Calderón-Zygmund and Multilinear Operators (1997), Cambridge Univ. Press: Cambridge Univ. Press Cambridge
[21] Peetre, J., On convolution operators leaving \(L^{p, λ}\) spaces invariant, Ann. Mat. Pura Appl., 72, 295-304 (1966) · Zbl 0149.09102
[22] Spanne, S., Sur l’interpolation entre les espaces \(L_k^{p, Φ\) · Zbl 0203.12403
[23] Stein, E. M., Singular integrals, harmonic functions, and differentiability properties of functions of several variables, Singular Integrals. Singular Integrals, Proc. Sympos. Pure Math., 10 (1966), Amer. Math. Soc: Amer. Math. Soc Providence
[24] Stein, E. M., Singular Integrals and Differentiability Properties of Functions (1970), Princeton Univ. Press: Princeton Univ. Press Princeton · Zbl 0207.13501
[25] Stein, E. M., Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals (1993), Princeton Univ. Press: Princeton Univ. Press Princeton · Zbl 0821.42001
[26] Strichartz, R., A multilinear version of the Marcinkiewicz interpolation theorem, Proc. Amer. Math. Soc., 21, 441-444 (1969) · Zbl 0175.42603
[27] C. Thiele, A uniform estimate, submitted for publication.; C. Thiele, A uniform estimate, submitted for publication.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.