×

Semi-parametric estimation in the nonlinear structural errors-in-variables model. (English) Zbl 1029.62039

Summary: In the nonlinear structural errors-in-variables model, we propose a consistent estimator of the unknown parameter using a modified least squares criterion. We give an upper bound of its rate of convergence which is strongly related to the regularity of the regression function and is generally slower than the parametric rate of convergence \(n^{-1/2}\). Nevertheless, the rate is of order \(n^{-1/2}\) for some particular analytic regression functions. For instance, when the regression function is either a polynomial function or an exponential function, we prove that our estimator achieves the parametric rate of convergence.

MSC:

62G08 Nonparametric regression and quantile regression
62G20 Asymptotic properties of nonparametric inference
62J02 General nonlinear regression
62F12 Asymptotic properties of parametric estimators
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, T. W. (1984). Estimating linear statistical relationships. Ann. Statist. 12 1-45. · Zbl 0542.62039 · doi:10.1214/aos/1176346390
[2] Bickel, P. J., Klaassen, A. J. C., Ritov, Y. and Wellner, J. A. (1993). Efficient and Adaptative Estimation for Semiparametric Model. Johns Hopkins Univ. Press. · Zbl 0786.62001
[3] Bickel, P. J. and Ritov, A. J. C. (1987). Efficient estimation in the errors-in-variables model. Ann. Statist. 15 513-540. · Zbl 0643.62029 · doi:10.1214/aos/1176350358
[4] Birgé, L. and Massart, P. (1993). Rates ofconvergence for minimum contrast estimators. Probab. Theory Related Fields 97 113-150. · Zbl 0805.62037 · doi:10.1007/BF01199316
[5] Carroll, R. J., K üchenhoff, H., Lombard, F. and Stefanski, L. A. (1996). Asymptotics for the SIMEX estimator in nonlinear measurement error models. J. Amer. Statist. Assoc. 91 242-250. JSTOR: · Zbl 0871.62019 · doi:10.2307/2291401
[6] Carroll, R. J. and Hall, P. (1988). Optimal rates ofconvergence for deconvolving a density. J. Amer. Statist. Assoc. 83 1184-1186. JSTOR: · Zbl 0673.62033 · doi:10.2307/2290153
[7] Carroll, R. J. and Stefanski, L.A. (1990). Approximate quasilikelihood estimation in models with surrogate Predictors. J. Amer. Statist. Assoc. 85 652-663. JSTOR: · doi:10.2307/2290000
[8] Chan, L. K. and Mak, T. K. (1985). On the polynomial functional relationship. J. Roy. Statist. Soc. Ser. B 47 510-518. JSTOR:
[9] Cheng, C. H. and Van Ness, J. W. (1994). On estimating linear relationships when both variables are subject to errors. J. Roy. Statist. Soc. Ser. B 56 167-183. JSTOR: · Zbl 0800.62453
[10] Cook, J. R. and Stefanski, L. A. (1994). Simulation-extrapolation estimation in parametric measurement error models. J. Amer. Statist. Assoc. 89 1314-1328. · Zbl 0810.62028 · doi:10.2307/2290994
[11] Dacunha-Castelle, D. and Duflo, M. (1986). Probability and Statistics 2. Springer, Berlin. · Zbl 0586.62003
[12] Davis, K. B. (1975). Mean square error properties ofdensity estimates. Ann. Statist. 3 1025- 1030. · Zbl 0311.62020 · doi:10.1214/aos/1176343207
[13] Davis, K. B. (1977). Mean integrated square error properties ofdensity estimates. Ann. Statist. 5 530-535. · Zbl 0359.62031 · doi:10.1214/aos/1176343850
[14] Fan, J. (1991). On the optimal rates ofconvergence for nonparametric deconvolution problems. Ann. Statist. 19 1257-1272. · Zbl 0729.62033 · doi:10.1214/aos/1176348248
[15] Fan, J. and Masry, E. (1992). Multivariate regression estimation with errors-in-variables: asymptotic normality for mixing processes. J. Multivariate Anal. 43 237-271. · Zbl 0769.62028 · doi:10.1016/0047-259X(92)90036-F
[16] Fan, J., Truong, Y. K. and Wang, Y. (1991). Nonparametric function estimation involving errors-in-variables. In Nonparametric Functional Estimation and Related Topics 613627. Kluwer, Dordrecht.
[17] Fan, J. and Truong, Y. K. (1993). Nonparametric regression with errors in variables. Ann. Statist. 21 1900-1925. · Zbl 0791.62042 · doi:10.1214/aos/1176349402
[18] Gleser, L. J. (1981). Estimation in a multivariate ”errors in variables” regression model: large sample results. Ann. Statist. 9 24-44. · Zbl 0496.62049 · doi:10.1214/aos/1176345330
[19] Gleser, L. J. (1985). A note on G.R. Dolby’s unreplicated ultrastructural model. Biometrika 72 117-124. JSTOR: · Zbl 0562.62060 · doi:10.1093/biomet/72.1.117
[20] Gleser, L. J. (1990). Improvements ofthe naive approach to estimation in nonlinear errorsin-variables regression models. Statistical analysis ofmeasurement error models with applications. Contemp. Math. 112 99-114 · Zbl 0722.62044
[21] Golubev, G. K. and Levit, B. Y. (1996). Asymptotically efficient estimation for analytic distributions. Math. Methods Statist. 5 357-368. · Zbl 0872.62042
[22] Hausman, J. A., Newey, W. K. Ichimura, K. and Powell, J. L. (1991). Identification and estimation ofpolynomial errors-in-variables models. J. Econometrics 50 273-295. · Zbl 0745.62065 · doi:10.1016/0304-4076(91)90022-6
[23] Hausman, J. A., Newey, W. K. and Powell, J. L. (1995). Nonlinear errors in variables estimation ofsome Engel Curves. J. Econometrics 65 205-233. · Zbl 0825.62955 · doi:10.1016/0304-4076(94)01602-V
[24] Hsiao, C. (1989) Consistent estimation for some nonlinear errors-in-variables models. J. Econometrics 41 159-185. · Zbl 0705.62105 · doi:10.1016/0304-4076(89)90047-X
[25] Ibragimov, I. A. and Hasminskii, R. Z. (1982). Estimation ofdistribution density belonging to a class ofentire function. Theory Probab. Appl. 27 551-562. · Zbl 0516.62043 · doi:10.1137/1127062
[26] Ibragimov, I. A and Hasminskii, R. Z. (1983). Estimation ofdistribution density. J. Soviet Math. 21 40-57. · Zbl 0507.62041 · doi:10.1007/BF01091455
[27] Kiefer, J. and Wolfowitz, J. (1956). Consistency ofthe maximum likelihood estimator in the presence ofinfinitely many nuisance parameters. Ann. Math. Statist. 27 887-906. · Zbl 0073.14701 · doi:10.1214/aoms/1177728066
[28] Kukush, A. and Zwanzig, S. (1996). On inconsistency ofthe least squares estimator in nonlinear functional errors-in-variables models. Unpublished manuscript.
[29] Ledoux, M. (1996). On Talagrand’s deviation inequalities for product measures. ESAIM: Probab. Statist. 1 63-87. · Zbl 0869.60013 · doi:10.1051/ps:1997103
[30] Massart, P. and Rio, E. (1998). A uniform Marcinkiewicz-Zygmund strong law of large numbers for empirical processes. In Asymptotic Methods in Probability and Statistics. A Volume in Honour of Miklós Csörgö 199-211. North-Holland, Amsterdam. · Zbl 0933.60015 · doi:10.1016/B978-044450083-0/50013-7
[31] Nikol’ski i, S. M. (1975). Approximations of Functions of Several Variables and Embedding Theorems. Springer, Berlin.
[32] Reiersøl, O. (1950). Identifiability ofa linear relation between variables which are subject to error. Econometrica 18 375-389. · Zbl 0040.22502 · doi:10.2307/1907835
[33] Rudin, W. (1987). Real and Complex Analysis McGraw-Hill, New York. · Zbl 0925.00005
[34] Sepanski, J. H. and Carroll, R. J. (1993). Semiparametric quasilikelihood and variance function estimation in measurement error models. J. Econometrics 58 223-256. · Zbl 0780.62038 · doi:10.1016/0304-4076(93)90120-T
[35] Taupin, M. L. (1998). Semiparametric estimation in the nonlinear errors-in-variables model. Ph.D. thesis, Université Paris-Sud. · Zbl 0916.62047 · doi:10.1016/S0764-4442(98)80055-4
[36] Van der Vaart, A. W. (1988). Estimating a real parameter in a class ofsemiparametric models. Ann. Statist. 16 1450-1474. · Zbl 0665.62034 · doi:10.1214/aos/1176351048
[37] Van der Vaart, A. W. (1996). Efficient maximum likelihood estimation in semiparametric mixture models. Ann. Statist. 24 862-878. · Zbl 0860.62029 · doi:10.1214/aos/1032894470
[38] Wolter, K. M. and Fuller, W. A. (1982). Estimation ofnonlinear errors-in-variables models. Ann. Statist. 10 539-548. · Zbl 0512.62065 · doi:10.1214/aos/1176345794
[39] Zhang, C. H. (1990). Fourier methods for estimating mixing densities and distributions. Ann. Statist. 18 806-831. · Zbl 0778.62037 · doi:10.1214/aos/1176347627
[40] Zwanzig, S. (1990). On consistency in nonlinear functional relations. Unpublished manuscript.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.